Evaluating Structural Similarity in XML Documents®

Andrew Nierman and H. V. Jagadish
University of Michigan
{andrewdn, jag} @eecs.umich.edu

Abstract XML repositories and DTDs (which provide the schema).
XML documents on the web are often found without DTDs, par- For Instance, a DTD could allow a s.ear.ch to only access the
ticularly when these documents have been created from Iegacgﬁlevant port!ons 9f the dfﬁ‘ta’ resulting in greater effICIen.Cy.
HTML. Yet having knowledge of the DTD can be valuable in ~ The a|g.0”thm in [10] is useful only when we apP'Y it
querying and manipulating such documents. Recent work (cfto a repository of XML documents where the repository is
[10]) has given us a means to (re-)construct a DTD to describ@ homogeneous collection. If the collection includes struc-
the structure common to a given set of document instances. Howturally unrelated documents, then the DTD inferencing pro-
ever, given a collection of documents with unknown DTDs, it may cedure will result in DTDs that are of necessity far too gen-
not be appropriate to construct a single DTD to describe everyra| and therefore not of much value. Ideally, the repos-
document in the collection. Instead, we would wish to partition itory would be divided into groups of structurally similar
the collection into smaller sets of “similar” documents, and thendocuments first, and then the DTD inferencing mechanism
induce a separate DTD for each such set. It is this partitioningC I,
Ry ould be applied individually to each of these groups.

problem that we address in this paper. In thi defi hod f) h

Given two XML documents, how can one measure structural n this paper we define a new metho O'f computing t .e

distance between any two XML documents in terms of their

(DTD) similarity between the two? We define a tree edit distance

based measure suited to this task, taking into account XML jgStructure. The lower this distance, the more similar the two

sues such as optional and repeated sub-elements. We develoéjgcuments are in terms of structure, and the more likely

dynamic programming algorithm to find this distance for any pairthey a(;%'_[o have beer! C;eatﬁ_d from th‘? same DI]D' gl;?ftlrllg
of documents. We validate our proposed distance measure expe?—goo 'S(;ance metric for t (Ijsfsettmﬁ s somewhat di 'ﬁu t
imentally. Given a collection of documents derived from multiple since two documents created from the same DTD can have

DTDs, we can compute pair-wise distances between documen{gd'ca"y different structures (due to repeating and optional

in the collection, and then use these distances to cluster the docg_lements), but we would still want to compute a small dis-

ments. We find that the resulting clusters match the original DTDstanCe between these documents. We account for this by

almost perfectly, and demonstrate performance superior to alterl-ntmducmg edit operations that allow for the cutting and

natives based on previous proposals for measuring similarity OPaStmg of whole sections of a document. Using our re-

trees. The overall algorithm runs in time that is quadratic in docu-SUItIng pair-wise distance measure, we show that standard

ment collection size, and quadratic in the combined size of the twocmSte”nc? glgocgl';hms ?10 very ng_ll_gt pulling together doc-
documents involved in a given pair-wise distance calculation. uments derived from the same)

1 Introduction 2 Background

The Extensible Mark-up Language (XML) is seeing in- 2.1 XML Data Model

creased use, and promises to fuel even more applicationg, xmL document can be modeled as an ordered labeled
in the future. But many of these XML documents, €Spe-yee [9]. Each node in this tree corresponds to an element

cially those beginning to appear on the web, are withoufy, the document and is labeled with the element tag name.
Document Type Descriptors (DTDs). In [10] the authorsg4c eqdge in this tree represents inclusion of the element
provide a method to automatically extract a DTD for a Seteqregponding to the child node under the element corre-
of XML documents. They provide several benefits for thesponding to the parent node in the XML file.

existence of DTDs. Given that more repositories of XML

- > 1 XML documents may also have hyper-links to other
documents will exist in the future, methods will be needeo'documents. Including such links in the model gives rise

to access these documen_ts and _p_erform queries over the'fB'a graph rather than a tree. Such links can be important
much as we do today with traditional database systemﬁn actual use of the XML data. However, they are not im-

Just as schemas are necessary in a DBMS for the provi, ant as far as the structure of the document at hand, and
sion of efficient storage mechanisms, as well as the forhence we will not consider them further in this paper.

mulation and optimization of queries, the same is true for A DTD provides rules that define the elements, at-
*This work was supported in part by NSF grant number 11S-0002356. tributes associated with elements, and relationships among

elements, thahayoccur in an XML document. DTDs have ing elements. Any edit distance metric that permits change
the expressive power of regular languages: elements mayp only one node at a time will necessarily find a large dis-
be required, optional, or may be repeated an arbitrary nuntance between such a pair of documents, and consequently
ber of times. Attributes may also be required or optional. will not recognize that these documents should be clustered
together as being derived from the same DTD. In this sec-
2.2 Attributes in the Data Model tion, we develop an edit distance metric that is more indica-

Elements in XML can have attributes, and these attribute§Ve of this notion of structural similarity. First we present
can play an important role in the DTD determination prob-2 féw supporting definitions.

lem we are attempting to tackle. The traditional DOM la-
beled ordered tree has one node for every element in th
document; attributes adorn the node corresponding to thBefinition 3.1 [Ordered Tree] An ordered tree is a
element of which they are attributes. To incorporate atrooted tree in which the children of each node are ordered.
tributes into our distance calculation, we create an addilf a nodez hask children then these children are uniquely
tional node in the tree for each attribute, and label it withidentified, left to right, as:y, zo, . . ., k.

the name of the attribute. These attribute nodes appear as = |))

“children” of the node that they adorned in the DOM rep- Def|n|t|on_3.2 [First-Level Subtree] legn an ordered
resentation, sorted by attribute name, and appearing befofé€ 7' With a root - of degreek, the first-level sub-

all sub-element “siblings”. trees, T1,T>,...,T, of T are the subtrees rooted at

In short, we represent each XML document as a labeled1>"2:-- - Tk-

ordered tree with a node corresponding to each element anglainition 3.3 [Labeled Tree] A labeled treel” is a tree

to each attribute. We do not represent the actual values Qf 5t associates a label(z), with each node: € T'. We let
the elements or attributes in the tree —we are only interesteg(T) denote the label of the root af.

in the structural properties of the XML file.

.1 Basic Definitions

Definition 3.4 [Tree Equality] Given two ordered
2.3 Related Work labeled treesA and B, and their first-level subtrees

There is considerable previous work on finding edit dis-A1,- - Am @and By, ..., B, A = Bif: A(4) = A(B),

tances between trees [5-8, 13-17]. Most algorithms if’t = 7. @ndi = j = A; = Bj,for0 <i <m,0 < j <n.

this category are direct descendants of the dynamic pro- _ .

gramming techniques for finding the edit distance betweer? -2 Tree Transformation Operations

strings [12]. The basic idea in all of these tree edit distanc&\Ve utilize five different edit operations in the construction

algorithms is to find the cheapest sequence of edit operaf our algorithm. Given a tre@& with \(T") = [and first-

tions that can transform one tree into another. level subtreed?, ..., T,,, the tree transformation operations
A key differentiator between the various tree-distanceare defined as follows:

algorithms is the set of edit operations allowed. An early)
work in this area is by Selkow [13], and allows inserting Definition 3.5 [Relabel] Relabelr(lnew) is a relabel op-

and deleting of single nodes at the leaves, and relabeling &ration applied to the root &f that yields the tred with
nodes anywhere in the tree. The work by Chawathe in [5'(17) = lnew and first-level subtre€s, ..., T,.
utilizes these same edit operations and restrictions, but i§ofinition 3.6 [Insert] Given a noder with degree 0,
targeted for situations when external memory is needeqnsertT(%i) is a node insertion operation applied To
to calculate the edit distance. There are several other i ; that yields the tred” with \(T7) = [and first-level
proaches that allow insertion and deletion of single nocje%ubtreeéﬂ, T, Tirs- . T,
anywhere within a tree [14-17].

Expanding upon these more basic operators, Chawath®efinition 3.7 [Delete] If the first-level subtre€l; is a
et. al. [7] define a move operator that can move a subtree dsaf node,Deleter(T;) is a delete node operation applied
a single edit operation, and in subsequent work [6] copyingo T" at that yields the tre@s with A\(T7) = [and first-

(and its inverse, gluing) of subtrees is allowed. These twdevel subtree§?, ..., T; 1, Ti11, .., Tm.
operations bear some resemblance to the insert subtree and =)
delete subtree operations that are used in this paper, but tiRefinition 3.8 [Insert Tree] Given a ftree 4,

approaches in [6, 7] are heuristic approaches and the algd?s¢rtIreer(A,7) is an insert tree operation applied
rithm in [6] operates on unordered trees, making it unsuiti0 7' @t that yields the treel” with A(77) = I and
able for computing distances between XML documents. firstlevel subtreed, ..., T, A, Tipa, ..., T

Definition 3.9 [Delete Tree] DeleteTreer(T;) is a
delete tree operation applied t&' at ¢ that yields
Two XML documents produced from the same DTD canthe tree 7 with A\(77) = [and first-level subtrees
have very different sizes on account of optional and repeat?y, ..., T; 1, Ti11, -, T

3 Tree Edit Distance

Associated with each of these edit operations is a non{ PatemTree, P | Tree A © Tree B Tree C
negative cost. Our algorithms work with general costs, but 0 0 0
in this paper we restrict our presentation and experimenta, O,
tion to constant (unit) costs. » © O oo o VOO O © O
: © © ©
3.3 Allowable Edit Sequences 0, O,
containedin(P, A) = true| containedin(P, B) = true [containedin(P, C) = false|

The usual way in which the edit distance is found between
two objects is to consider alternative sequences of edit op-
erations that can transform one object into the other. The
cost of the operations in each sequence is considered, and
the lowest cost sequence among these defines the edit dig- Algorithm
tance between the two objects. In our case, rather than _ _ _
considering all possible sequences of edit operations, wé1 Dynamic Programming Formulation
restrict ourselves to all “allowable sequences” of edit operDynamic programming is frequently used to solve mini-
ations. We do this both for computational reasons, as wellnum edit distance problems. In determining the distance
as to improve our results in the XML domain. between a source tred, and a destination tre®, the key

to formulating the problem using dynamic programming is

Definition 3.10 [Minimum Edit Distance Cost ()] 1o first determine the cost of inserting every subtredsof
Given any treest and B and the seE of all allowable se- 514 the cost of deleting every subtreef

Figure 1: Examples of theontainedIn Procedure

guences of edit operations that when applieAtpi!lyield When determining the cost of inserting a subtfge
a tree equal ta3, we letd(4, B) denote the minimum of s could possibly be done with a singlesertTree op-
the sums of the costs of each sequencg.in eration (if it is allowable), or with some combination of

InsertTree and Insert operations. There is a cost as-
sociated with each possible sequencd wfertTree and
Insert operations that result in the construction of the sub-
treeT;. The minimum of these costs is denoted as the
graft cost of T;, or Costgrart(T3). A prune cost is de-
fined similarly for the minimum cost sequence Délete

5 A tree that has been inserted via thesertTree and DeleteT'ree operations needed to remove a subtree.

operation may not subsequently have additional nodes in Due to the constraints specified in definition 3.11 for an
. allowable sequence, we have a simple and efficient bottom-
serted. A tree that has been deleted via fhdeteT'ree q P

: .) up procedure for computing the graft co8%stg,q r+. At
operation may not previously have had (children) nodesegc'?1 noder € B we ch:aICL?Iate t?]e cost of ir?seﬁing the
deleted. single nodev and add the graft cost of each childwgfwe

The first restriction limits the use of the insert tree andCaII this sumd,. We also check whether the pattern tree

delete tree operations to when the subtree that is being irf-" which Zthﬁ subtree ;c;oteg jt is containedIn the
serted (or deleted) is shared between the source and dexurce treed. conic(;;jne n i g IS trLrIrz’ We_zrﬁompufte
tination tree. We can only insert (delete) subtrees that ar € Insert tree cost » we call this sumi,. e grait

already “contained in” the source (destination) tree. A pa,[_cost for the subtree rooted atis the minimum ofd, and

tern treeP is said to becontainedIn treeT, if all nodes of dy. Prune costs are computed similarly for each nodé.in

P occurinT, with the same parent/child edge relationships Given a iourc_e tred anda c;lestmzitlon lreB, Wg can
and same sibling order; additional siblings may occuf jn etermine the minimum cost of transformiriginto B us-

even between sibling nodes in the embedding of the paﬂ-ng the operators defined in section 3.2, and the notion of

tern tree. This allows for matching of trees when optional@//0Wable sequences in section 3.3. This dynamic program-

elements are used in DTDs. See Figure 1 for some exanjling @lgorithm is shown in figure 2. Pre-computed costs

ples of thecontainedIn relation, where a pattern trgeis for the graft and prune.costs are used in lines 8 apd 10, and

potentially containedIn various other trees. Without this in the nested loops at lines 16 and 17 of the algorithm.

first restriction on allowable sequences of edit operations .
. . .42 Complexity

one could delete the entire source tree in one step and insert

the entire destination tree in a second step — totally defeatn this section we analyze the complexity of computing our

ing the purpose of the insert tree and delete tree operationedit distance measure between a sourceAraad a desti-

The second restriction provides us with an efficientnation treeB. There are two stages to the algorithm. In the
means for computing the costs of inserting and deleting théirst stage, all the graft and prune costs are pre-computed.
subtrees found in the destination and source trees, respeler the second stage, we use these pre-computed values to
tively. This procedure is outlined in the next section. compute the actual edit distance, as given in figure 2.

Definition 3.11 [Allowable] A sequence of edit opera-
tions isallowableif it satisfies the following two condi-
tions:

1. A tree P may be inserted only iP already occurs
in the source treel. A tree P may be deleted only i?
occurs in the destination tree.

time complexity for this procedure 3(| A|| B]).

1. private int editDistance(Tree A, Tree B) Having computed theseontainedIn relations, the

2 int M = Degree(A); graft and prune costs can be calculated, as in section 4.1,
3 int N = Degree(B); by simply performing post-order traversals®fand A, re-

4. inq]f] dist=new int[0. MI[0.NJ, spectively, so the complexity of these operations is simply
2' distOJ[0] = C'ost retaver (A(4), A(B)); O(|B|) andO(]A|), and the overall complexity of this stage

7. for(intj=1:j<N:j++) is O(|A]|B]).

8 dist{O][j] = dist{O][j-1] + Costerase(B;):

9. for (inti = 1;i < M: i++) 4.2.2 Stage Two — Dynamic Programming (edit Distance)

10. dist[i][0] = dist[i-1][0] + Cost prune(Ai); Theedit Distance procedure in figure 2 is called once for
11 o) _ each pair of vertices at the same depth in the input trees
12, for(inti=1/1< M;i++) andB. This results in a complexity ad(| A||B]) [13].

13. for (intj=1;j<N;j++)

14. dist[i][j] = min ,

15. dist[i-l][j-l{] + editDistanceq., B;), 423 Overall Complexity

16. dist[i][-1] + Costarart(B;), O(|A]|B]) is the time complexity for both the pre-
17. dist[i-1][j] + Cost prune(A:) computation phase, and the dynamic programming phase,
18. b so O(|A||B|) is the overall complexity of our algorithm
19. return dist[M][N]; to compute structural edit distance between two trdes

20.} lfeditDistance and B. This linear dependence on the size of each tree

(and quadratic dependence on the combined size of the two
trees) is borne out in the experimental results shown in Sec-
tion 5.3.

Figure 2: Edit Distance Algorithm

4.2.1 Stage One — Computing Costcraft and Cost prune 5 Experimental Evaluation

Gi that ; th tati f araft dThe goal of our work is to find documents with structural
iven that we perform the pré-computation of graft an similarity, that is, documents generated from a common

prune Costs in a.naive manner, the complexity of th? ﬁrsbTD. We apply a standard clustering algorithm based on
stage would dominate the second stage. The central ISSUEHRe distance measures computed for a given collection of

that determining whether a subtree is contained in anOtheJocuments with known DTDs. For any choice of distance

free is patentially an expensive operation, and this OP€T%atric, we can evaluate how closely the reported clusters
tion may have to be performed repeatedly. We present afe\g ’

.)) orrespond to the actual DTDs.
implementation details necessary to reduce the complex-

ity for computing graft costs. A complementary method isg 4 Setup

used for prune costs.

First, for each leaf node < B, we determine its
containedInList, that is, which nodes il have the same In addition to our edit distance measure, we evaluate two
label asv. Rather than do so repeatedly for each node indimeasures proposed previously in the literature for tree edit
vidually, we do so by node label. We perform an in-orderdistance — which we refer to as Chawathe [5] and Shasha
walk of A and append each node to a list corresponding t¢14] respectively, and a third non-structural baseline metric.
its label (these lists are kept in a hash, with the labels agve report results in this section for these three measures in
keys). This cost® (] A|). Then we walk through the leaves addition to our own.
of B, and for each leaf nodg we set a pointer for thatnode ~ The Chawathe measure- In [5] an algorithm is pre-
to its corresponding list of nodes fror, based on the la- sented for computing differences between hierarchically
bel. This cost®)(|B|), and the overall procedure for deter- structured data such as XML. Disregarding the work’s con-
mining the leaf nodeontainedInLists is O(|A| + |B]). tribution towards efficient use of secondary storage, our al-

Now, we perform a post-order traversal of the nodesgorithm can be seen as a strict generalization of this ap-
of B, and at each non-leaf node, we calculate theproach. Specifically, if we disallow tree insertions and
containedInList based upon theontainedinLists of deletions in our measure, we would obtain exactly the
each of its children. The process is similar to a simpleChawathe measure. The complexity of this approach is

5.1.1 Algorithms Used

merge operation. All of theontainedIn lists of the chil- O(|A||B]), when finding the minimum edit distance be-
dren are already sorted based on positioMinIn total, tween the treegl andB.

across the entire traversal, we will ha\g| lists to merge, The Shasha Measure- Dennis Shasha and Jason Wang
with each of theseB| lists being of length at mostA|. propose a tree edit distance metric in [14] that permits the

Given that the maximum degree of any nodeAnis as- addition and deletion of single nodes anywhere in the tree,
sumed constant, independent of the sizes of the trees, thmt just at the leaves. However, entire subtrees cannot be

inserted or deleted in one step. The complexity of this ap5.1.3 Computing Environment

proach isO(|A|| B| depth(A) depth(B)). These tests were done on an IBM RS6000 with dual pro-

Tag Frequt_ancy 07req) — A good question t(.) ask is .cessor 604e PowerPC Processors, running at 332 MHz. All
whether all this complex tree structure based difference '%pproaches except the Shasha measure, were implemented
a good thing to do in the first place. How about a S'mpleby us in Java. The Shasha measure is implemented in C and

measure that looks at the count of each type of label in th. us the timing results cannot be directly compared with the
two documents, and adds up the absolute values of the d'dther methods

ferences? By utilizing a simple hash data structure for the
element names and the frequencies, we can compute the, cjystering
tag frequency distancéy,..,, between two treed and B

in O(|A4] + | B|). Due to lack of space we do not present the distances ob-
tained from comparing all pairs of documents to each other,
51.2 Data Sets Used rather we simply present the clustering results that were ob-

] _tained using these distances. We utilize well-known tech-
We performed experiments on both real and synthetigijques in hierarchical agglomerative clustering [11] (al-

data sets. For a real data set, we used XML data Obfhough any form of clustering could be used).

tained from the online XML version of the ACM SIGMOD The end result can be represented visually as a tree

Record [1]. Specifically, we sampled documents from eachyt cjysters called alendrogram The dendrogram shows

of the following DTDs: ProceedingsPage.dtd, Index- the clusters that were merged together, and the distance

TermsPage.dtd, andOrdinarylssuePage.dtd. between these merged clusters (the horizontal length of
We also utilize synthetic data generated in an automatéghe pranches is proportional to the distance between the

fashion from real DTDs. Real-world DTDs were obtained merged clusters). Two example dendrograms can be seen

online from [2, 3} and an XML document generator [4] i, figure 3.

that accepts the DTDs as input was used to generate the cjystering algorithms require knowledge of the distance

XML documents. We varied the following two key param- petween any pair of clusters, including single document

eters to generate repositories: _ _ “clusters”. For this purpose, we use the Unweighted Pair-
MaxRepeatsThe maximum number of times a child el- Group Averaging Method (or UPGMA). The distance be-

ement node will appear as a child of its parent node (WheRyeen clusterg; andC; is computed as follows:
the * or + option is used in the DTD). A value between

0 and MaxRepeats is chosen randomly for each repeat- 1C:11¢5] , .
; ; S 8(docS docc")
ing node (rather than once for the entire document). The ko> @Y
- . k=11=1

greater this number, the greater the fanout and also the — Distance(C;, C;) = CIC]
greater the variability in fanout. e

Attribute Occurrence Probabilities There are both re- Where |C;| is the number of XML documents contained
quired and optional attributes specified in a DTD. We letin clusterC; and dockc’i is the k" XML document in the
Probaurivute €qual the probability that an optional at- clusterC;.
tribute will occur. In order to compare the hierarchical clustering results,

We experimented with values fdWl ax Repeats in the we introduce our notion of a “mis-clustering”. Given a
range [2,12]. Also, we tested the following values for dendrogram, the number of mis-clusterings is equal to the
the attribute occurrence probabilitiesProb ¢iripute € minimum number of documents in the dendrogram that
{.1,.25,.5,.75,.9,1}2. In this paper, we present a repre- would have to be moved, so that all documents from the
sentative sampling of these tests with the following syn-same DTD are grouped together. A small sample cluster-

thetic data sets: ing is shown in figure 3: in this example our approach has
Data Set X MaxRepeats =4, Prob aitrivute = 75 no mis-clusterings, while the Chawathe approach has three
Data Set 2 MaxRepeats = 4, Probagripute = 1 (at- mis-clusterings.
tributes always appear); A summary of the number of mis-clusterings, for each
Data Set 3 MaxRepeats =8, Probairipute = -75; of the data sets, is found in table 1. Our approach performs
Data Set 4 MaxRepeats = 8, Prob attrivute = 1. better than the competing approaches for each of the data
All operator costs were set equal to 1 for all of the ex-sets (and in fact, in the underlying data, there is no average
periments that we present in this paper intra-DTD distance that is lower than our approach, and no

1 average inter-DTD distance that is higher). Our approach
_The DTDs that were used were: HealthProduct.did, blastml.did,yq6g petter when all attributes are forced to appear, since
dri.dtd, flights.dtd, flixml.dtd, roamops-phonebook.dtd, vcard.dtd, and « " .
dsml.dtd. there would be more subtrees that “look” the same in docu-
2For all values ofProb ays,ibute NOt equal to 1, there were no ap- Ments generated from the same DTD, and:théainedIn

preciable differences in the results, and we simply show the results foprocedure would return true more often.
PTObAttribute = .75.
3Small changes in operator costs did little to affect overall clusteringaccuracy. These results are not presented due to lack of space.

a) Our Approach

OrdinarylssuePage—1.xml
OrdinarylssuePage—8.xml
OrdinarylssuePage—3.xml
OrdinarylssuePage—4.xml
OrdinarylssuePage—5.xml
OrdinarylssuePage—2.xml
OrdinarylssuePage—7.xml
OrdinarylssuePage—6.xml
OrdinarylssuePage—9.xml

OrdinarylssuePage—10.xml

b) Chawathe

OrdinarylssuePage— 1 xml
OrdinarylssuePage—8.xm
OrdinarylssuePage—3.xml
OrdinarylssuePage—4.xml

L OrdinarylssuePage—5.xml
OrdinarylssuePage—6.xm
OrdinarylssuePage—7.xml

IndexTermsPage—1.xm

IndexTermsPage—8.xm

/

IndexTermsPage—1.xml IndexTermsPage—6.xml

IndexTermsPage—8.xml IndexTermsPage—4.xm

IndexTermsPage—6.xm| IndexTermsPage—9.xml

IndexTermsPage—4.xml| IndexTermsPage—2.xml

IndexTermsPage—9.xml IndexTermsPage—5.xm
IndexTermsPage—2.xml IndexTermsPage—7.xm
IndexTermsPage—5.xml IndexTermsPage—10.xml

IndexTermsPage—3.xml

OrdinarylssuePage—9.xml
OrdinarylssuePage—10.xml

IndexTermsPage—7.xml

IndexTermsPage—10.xml

IndexTermsPage—3.xml

Figure 3: Sample Clustering Results for SIGMOD Record

Data | Data | Data | Data | SIGMOD
Setl| Set2 | Set3| Set4 | Record
Our Approach | 10 2 11 9 0
Chawathe 16 8 30 25 3
Shasha 16 9 32 39 3
Tag Frequency| 22 21 35 40 3

Table 1: Number of Mis-Clusterings for Each Approach

5.3 Timing Analysis

Our algorithm appears more complex conceptually, ho

ever, its asymptotic time complexityO(|A||B|)) is the

same as the Chawathe algorithm, and slightly better than

Shasha'’s algorithm(| A||B| depth(A) depth(B))). We

are asymptotically worse than the.., approach, which is

6 Conclusion

XML is becoming all-pervasive, and effective management
of XML data is a high priority. The applicability of many
database techniques to XML data depends on the exis-
tence of DTDs (or schema) for this data. In the laissez-
faire world of the Internet, though, we frequently have to
deal with XML documents for which we do not know the
schema. While there has been previous work on deducing
the DTD for a collection of XML documents, such algo-
rithms depend critically on being given a relatively homo-
geneous collection of documents in order to determine a
meaningful DTD.

In this paper we have developed a structural similarity
metric for XML documents based on an “XML aware” edit

‘distance between ordered labeled trees. Using this metric,

we have demonstrated the ability to accurately cluster doc-
uments by DTD. In contrast, we have shown that several
other measures of similarity do not perform as well, while
requiring approximately the same amount of computation.

References

[1] Available athttp://www.acm.org/sigmod/record/xml

[2] Available athttp://www.schema.net
[3] Available athttp://www.xml.org
[4] Available athttp://www.alphaworks.ibm.com

w- 51

(6]

(7]

O(|A|+|BYJ), but this approach performs poorly in terms of
clustering the documents. The formulae are verified exper-
imentally, and we show the timing results for our approach 8]
in figure 4. The time to find the edit distance between pairs

of trees of various sizes grows in an almost perfect linear [9] World Wide Web Consortium. The document object model.
fashion with tree size (of each tree). The corresponding
times for the Chawathe technique were smaller by (only) d10]

factor of 1.6 on average.

T T T T T T T T
*
3l Number of Nodes in Tree 2 (given as a range) i
[50,100) +
[250, 300)
[450,500) * %
*
25 | * * B
* X *
%\ * X Xx * 32* *
c * * *
8 * *X * %
8 2r B B
: TR
= ¥ KX
15 > E :
’ % x X ¥ % %
L ™ - &
3 * £ sk ol
* ¥ % 5 %
%?ﬁ%x B % e
1k TE A kK * X o 1
ci B sl | S T R QU
X X -
T T §+ R T,
!!?% %ﬁ%tﬁ‘&iﬁé Teftmogm 4 By Iy o1 f
05 | L L L L L L L

400 500
Number of Nodes in Tree 1

600 700

900

[11]

[12]

(13]

[14]

[15]

[16]

[17]

Figure 4: Our Approach - Timing Results (to compute pair-

wise distance) for Various Tree Sizes

S. Chawathe. Comparing hierarchical data in extended
memory. InProc. of VLDB pages 90-101, 1999.

S. Chawathe and H. Garcia-Molina. Meaningful change de-
tection in structured data. Proc. of ACM SIGMODpages
26-37, 1997.

S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. InProc. of ACM SIGMOD pages 493-504,
1996.

Gregory Cobena, Serge Abiteboul, and Amelie Marian. De-
tecting changes in XML documents. fmoc. of ICDE 2002.

http://www.w3.0rg/DOM/

M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. Xtract: A system for extracting document type
descriptors from XML documents. IRroc. of ACM SIG-
MOD, pages 165-176, 2000.

N. Jardine and R. SibsorMathematical TaxonomyJohn
Wiley and Sons, New York, 1971.

V. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversaov. Phys. Dok|6:707-710,
1966.

S. Selkow. The tree-to-tree editing problermformation
Processing Letter$(6):184-186, December 1977.

D. Shasha and K. Zhang. Approximate tree pattern match-
ing. InPattern Matching in Strings, Trees and Arragbap-
ter 14. Oxford University Press, 1995.

K. C. Tai. The tree-to-tree correction problerournal of
the ACM 26:422-433, 1979.

J. Wang, K. Zhang, K. Jeong, and D. Shasha. A system
for approximate tree matchindEEE TKDE, 6(4):559-571,
1994.

K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related probleshaM
Journal of Computing18(6):1245-1262, December 1989.

