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Abstract

With the growing popularity of XML as the data representation language, collections of the XML data are exploded in numbers. The
methods are required to manage and discover the useful information from them for the improved document handling. We present a schema
clustering process by organising the heterogeneous XML schemas into various groups. The methodology considers not only the linguistic
and the context of the elements but also the hierarchical structural similarity. We support our findings with experiments and analysis.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

XML has become a standard for information exchange
and retrieval [34]. With the continuous growth in the XML
data, the ability to manage massive collections of XML
data and to discover knowledge from them becomes essen-
tial for the Web-based information systems [15,25]. A pos-
sible solution is to group the similar XML data based on
their context and structure. The clustering of XML data
facilitates a number of advanced applications such as
improved information retrieval, data and schema integra-
tion, document classification analysis, structure summary
and indexing, and query processing and optimization
[6,23].

The clustering data mining process categorizes the XML
data based on their similarity without having a prior
knowledge on the taxonomy. There exist a number of clus-
tering methods dealing with the (unstructured) database
objects and text data [3,36]. The XML data is different –
semistructured and hierarchical [34]. There are two types
of XML data: XML documents and XML schemas. A
XML schema describes the structure of the XML docu-
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ment. Usually, XML’s schema can be obtained separately
without scanning the whole document. Therefore, a
method to cluster the XML documents should take advan-
tage of their schema.

The similarity of correspondence elements between the
XML documents can be conducted efficiently using the rel-
evant XML schemas. The document schema provides a
definitive description of the XML document, while docu-
ment instances only give a snapshot what the XML docu-
ment may contain. The document definition outlined in a
schema holds true for all document instances of that sche-
ma. So the result produced from the clustering of schemas
will hold true for all document instances of those schemas,
and can be reused for any other instances. On the contrary,
the result of the clustering of document instances will hold
true for included document instances only. The clustering
process is to be repeated for any other document instances.

This paper presents the XMine methodology that quan-
titatively determines the similarity between the heteroge-
neous XML schemas by considering the semantic, as well
as the hierarchical structural similarity of elements. The
similar schemas are clustered into the separate meaningful
classes. Whilst there are several XML documents and
schema clustering techniques available [4,6,9,11,24,26],
this paper enhances this task by adding the hierarchical
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similarity in clustering by addressing the element level hier-
archical positions. The XMine methodology can deal with
the varying structures of schemas and with the varying
aspects of semantic differences in the schema elements.

The contributions of this paper are (1) combining the
semantic and syntactic relationships to calculate the lin-
guistic similarity between two element names; (2) calculat-
ing the structural similarity between two elements by
considering the ancestor–child relationship along with the
parent–child relationship in maximal similar paths; and
then (3) generalizing a suitable schema class hierarchy to
determine the relationships between the discovered sche-
mas in the XMine methodology.

The performance of XMine is demonstrated using a
number of heterogeneous schemas derived from the several
application domains. The empirical results demonstrate
that the semantic, syntactic and hierarchal relationships
of schema elements play important roles for producing
the good quality of clustering results. Most importantly,
it discovers that the syntactic similarity measure is more
useful than the semantic similarity measure.

1.1. Potential applications of the XMine methodology

The result of the schema class composition hierarchy can
serve as a basis for a number of XML application processes.
The clusters of schemas provide a hint for building an index
structure. The indexing based on the structural similarity
supports many applications. For example in the information
retrieval field, the XML-based search engines can improve
the speed and accuracy in retrieving the relevant portions
of the XML data by using the efficient indexes. Moreover,
several database tools that are developed to deliver, store,
integrate and query the XML data [5,12,21,33], require
indexing based on the structural similarity to support an
effective document storage and retrieval.

Moreover, the schema class composition hierarchy can
be viewed as a generalization of the training sets of schemas
to a super-class that is useful for further XML document
classification analysis. A number of heterogeneous sources
of schemas can be classified into this set of predefined clas-
sifications of schemas. This process will improve the XML
document handling and achieve more effective and efficient
searches for the relevant XML documents.

The method of the association rule mining can also be
applied to find the interesting correlation relationships of
all the metadata available in schemas belonging to the same
schema class. The element tags that frequently occur
together within a schema class can be used to maximally
distinguish one class of schema from others. This would
derive a set of association rules associated with each sche-
ma class. This schema element tag-based association anal-
ysis is also useful for discovering common XML structures
for a specific domain.

In addition, the schema class hierarchies can also facili-
tate a difficult task of schema integration process on the
heterogeneous schemas. The integration on the similar
schemas within each schema class would provide an easier
task than reconciling the schemas that are different in struc-
ture and semantics, which would involve a complex
restructuring process.

The similarity between two structures is also a notion
tied to a challenging task of reusing the XML or semi-
structured documents. In the XML document content
reuse, a document (or a part of the document) structured
under one schema must be restructured into an instance
of a different schema. The identification of the common
paths between two instances of schema helps to avail this
restructuring.

2. Background knowledge on the XML data

XML is a flexible representation language. There are
two varieties of XML data: XML documents and XML
schemas. A XML schema provides the data definitions
and structure of the XML document [1]. While XML doc-
uments are the instances of a schema giving a snapshot of
what the document may contain. A schema includes what
elements are (not) allowed; what attributes for any ele-
ments may be and the number of occurrences of elements;
etc. A schema for a document may be included as both
internally and externally (located within the same file or a
different file, respectively).

There are several XML schema languages, but only two
are commonly used. They are DTD (Document Type Def-
inition) and XML Schema or XML Schema Definition
(XSD), both of which allow the structure of XML docu-
ments to be described and their contents to be constrained
[32]. A DTD specifies the structure of an XML element by
specifying the names of its sub-elements and attributes. The
sub-element structure is specified using the operators
such as * for (zero or more elements), + (for one or more
elements), ? (for optional), and | (for or), as well as using
with the properties type (PCDATA, ID, IDREF,
ENUMERATION).

The DTD language is considered limited as it only sup-
ports a limited set of data types, has loose structure con-
straints, has limitation of content to textual, etc. To
overcome the above limitations of DTD, the XSD lan-
guage provides the novel features, such as simple and com-
plex types, rich datatype sets, occurrence constraints and
inheritance. An XML Schema is usually comprised of a
set of schema components, such as the type definitions
and element declarations. They can be used to assess the
validity of the well-formed element information items.

It is believed that XSD will soon take over DTD due to
its flexibility [13]. Therefore, the XMine methodology clus-
ters the XML schemas represented in both schema lan-
guages. Throughout this paper, we use the term ‘schema’
to express both the XML-DTD and XML-Schema unless
clearly specified.

Fig. 1 illustrates a simple example of a XML document
and its corresponding DTD. Fig. 2 shows a respective
XML Schema.



<?xml version=”1.0” encoding=”UTF-8”?> 
<Companies> <!DOCTYPE Companies [ 

<Company> <!ELEMENT Companies (Company+)>
<Symbol> Eagle.img </Title> <!ELEMENT Company (Symbol, Name,
<Name> EagleFarm </Name> Sector?, Industry, (Profile))> 
<Industry> Dairy </Industry> <!ELEMENT Profile (MarketCap,
<Profile> EmployeeNo, (Address), 

<MarketCap> 1000 </ MarketCap > Description)>
<EmployeeNo> 20 </ EmployeeNo > <!ELEMENT Address (State,City?)>
<Address> <!ELEMENT Symbol(#PCDATA)>

<State> QLD </State> <!ELEMENT Name (#PCDATA)>
</Address> <!ELEMENT Sector (#PCDATA)>
<Description> gdsfkls </Description> <!ELEMENT Industry (#PCDATA)>

</Profile> <!ELEMENT MarketCap (#PCDATA)>
</Company> <!ELEMENT EmployeeNo (#PCDATA)>

<!-- Some more instances --> <!ELEMENT State (#PCDATA)> 
…. <!ELEMENT City (#PCDATA)>

</Companies> ]>

Fig. 1. Example of a XML document and its respective DTD.

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema>
<xsd:element name="Companies" >

<xsd:complexType> 
<xsd:sequence> 

<xsd:element name=”Company" maxOccurs=”unbounded”>
<xsd:complexType> 

<xsd:sequence> 
<xsd:element name="Symbol" type="xsd:string"/> 
<xsd:element name="Name" type="xsd:string"/> 
<xsd:element name="Sector" type="xsd:string"/> 
<xsd:element name="Industry" type="xsd:string"/>
<xsd:element name="Profile" > 

<xsd:complexType> 
<xsd:sequence> 

<xsd:element name="MarketCap" type="xsd:string"/>
<xsd:element name="EmployeeNumber" type="xsd:unsignedInt"/>
<xsd:element name="Address" >

<xsd:complexType> 
<xsd:sequence> 

<xsd:element name="State" type="xsd:string"/> 
<xsd:element name=”City" type="xsd:string"/> 

</xsd:sequence>
</xsd:complexType> 
</xsd:element> 
<xsd:element name="Description" type="xsd:string"/>

</xsd:sequence>
  </xsd:complexType>

</xsd:element> 
</xsd:sequence>

</xsd:complexType> 
</xsd:element> 

</xsd:sequence> 
</xsd:complexType> 

</element> 
</xsd:schema>

Fig. 2. Example of the respective XSD of the above document.
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3. The XMine methodology

Fig. 3 illustrates the overall architecture of the XMine
methodology. This is deployed in three phases, namely pre-

processing, data mining, and postprocessing.
The focus of the preprocessing phase is to determine the

common and similar features between various schemas in
an automated manner to effectively facilitate the clustering
process. It includes four stages to address various issues
involved in measuring the similarity of schemas. Firstly,
the structure analyser analyses the structure of a schema
and transforms it into a labelled and directed acyclic tree

graph. The element analyser then measures the similarity
between the arbitrary elements in different schemas primar-
ily based on the element names. Next, the maximally simi-

lar paths finder determines the common and similar
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Fig. 3. The architecture of XMine methodology.
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hierarchical structure of the elements defined in the schema
by using the adapted sequential pattern mining algorithm.
Lastly, the overall degree of similarity between schemas is
computed by taking the element and structural similarity
into consideration.

The XMine methodology then proceeds for data mining.
The schemas similar in structure and semantics are grouped
together to form a hierarchy of schema classes using an
agglomerative clustering algorithm. The clustering result is
visualized in the final phase of the methodology. The visual-
ization is also a critical verification of the clustering results,
which assist the generalization and specialization on the
schema classes to develop a schema class hierarchy.

3.1. Preprocessing: The structure analyser

This module represents a schema into a labelled and
ordered tree. This module also performs a simplification
analysis of the schema trees in order to deal with the nest-
ing and repetition problems. XMine handles both the com-
mon types of XML schemas: DTD (document type
definition) and XSD (XML Schema definition). A schema
is composed of hierarchical elements, wherein for each ele-
ment it is possible to specify whether: it is optional (‘?’); it
occurs several times ((maxOccurs = ‘‘unbounded’’) in XSD
or (‘+’) or (‘*’) in DTD); subelements are alternatives with
respect to each other ((‘xsd:choice’) in XSD or (‘|’) in
DTD); or subemelmets are grouped in a sequence ((‘xsd:se-
quence’) in XSD or (‘,’) in DTD).

The constraint features of a schema serve as the primary
elements for the construction of the tree representation.
Each node in the tree contains its properties such as the
name, data type and cardinality. In addition, each node
in the tree corresponds to an element or an attribute, or
to an element operator with edges denoting the nested rela-
tionship between element and its subelement or operator.
Moreover, there can be more than one edge outgoing from
a node, only if the edge incoming to that node is labeled by
the AND or OR operator. The elements that have basic
property types of #PCDATA or ANY in a DTD, or ‘type’
in a XSD are considered as the leaves of the tree (e.g.
fName, mName, lName). Attributes are treated as special
elements that have an atomic property.

According to [18], it is difficult to determine the degree
of similarity of two elements that have the AND-OR oper-
ators in their content representation. Therefore these
details of a schema are normalized into a simplified schema
according to a series of predefined transformation proce-
dures similar to those in [18].

An example of representing DTDs as a tree form is
shown in Fig. 5.

3.2. Preprocessing: The element analyser

This module addresses the issue that the schemas from
same domains may have naming differences, and they
may model non-identical but similar content. The element
analyser measures the elements (tag names) similarity (lin-
guistic similarity coefficient: lSim) by comparing each pair
of elements of two schemas primarily based on their names,
assuming the same names bear the same semantic meaning.

It considers the equality of canonical name representa-
tions after the stemming and element preprocessing. This
is important to deal with the special prefix or suffix symbols
(e.g. CName fi customer name, EmpNo fi employee
number). In addition, the element names in different sche-
mas might not be exactly the same, but they may be syno-
nymical or syntactically same. Hence, the other
consideration is the equality of synonyms between elements
(e.g. carfi automobile, movie fi film) and the similarity of
elements based on the common string edit distance opera-
tion (e.g. chtitlefi title). We use the WordNet thesaurus
[10] to exploit synonyms (e.g., movie fi film) and the
user-defined dictionaries in order to identify abbreviations
(e.g.Emp fi Employee), acronyms (e.g. DOB fi Date of
Birth), and the user-defined synonyms.
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The steps to measure the linguistic similarity coefficient

(lSim) are as follows:

1. Parse the compound element name into a set of tokens
based on the customizable delimiters such as, uppercase,
punctuation, and special symbols, e.g., PONum-
ber fi {PO, Number}.

2. Expand the tokens into a linguistic set (lingSet) using the
user-defined dictionary with acronyms and abbrevia-
tions, e.g., {PO, Number} fi {Purchase, Order, Num-
ber}. T = Set of the tokens = lingSet (w) where w is an
element name.

3. Measure the lSim of two sets of name tokens T1 and T2
to find how linguistically close two element names are. It
is the average of the best similarity of each token with a
token in the other set. It is calculated as follows:

lSimðt1; t2Þ ¼

P

t12T 1

Rmax

t22T 2
simðt1; t2Þ þ

P

t22T 2

Rmax

t12T 1
simðt2; t1Þ

jT 1j þ jT 2j

sim (t1, t2) is a combined measure (as formulated in Fig. 4)
that calculates the semantic relationship (e.g. mov-
ie fi film) as found in the WordNet thesaurus [10] and the
syntactic relationship (e.g. ctitle fi title) using the string

edit distance function [27]. The semantic relationship is first
applied for exploiting the semantic similarity degree be-
tween two tokens by looking up in the WordNet. If the
WordNet does not identify common elements, the syntactic
relationship is then applied. The similarity thresholds (d
and l) are set to represent the minimal degree of similarity
required for the semantic and syntactic measures,
respectively.

Following is an example showing the calculation of lsim:
consider two elements w1-author_fname and w2-writer-

Name. Tokens are derived:T1-{author, fname} and T2-
{writer, name}. The similarity between each pair is
measured:

1. sim (author, name) = 1 (using the semantic similarity
measure)

2. sim (name, author) = 1 (using the semantic similarity
measure)

3. sim (fname, name) = 0.8 (using the string edit function
due to the semantic similarity less than d – Assuming d
is set as 0.7)
Function sim (t1, t2)
sim = SemanticSim (t1, {t2}, 1); /* Seman

  if sim ≥ δ then return sim;
else /* Syntactic Relationship */ 

))length(t),(tmax(length

ttnceedit_dista
sim

21

),( 21=

if sim ≥ μ then return sim;
return 0; /* No match */

Fig. 4. Algorithm to compute ling
4. sim (name, fname) = 0.8 (using the string edit function
due to the semantic similarity less than d)

Linguistic similarity coefficient ðlsimÞ : ð1þ0:8Þþð1þ0:8Þ
2þ2

¼ 0:9

3.3. Preprocessing: The maximally similar paths finder

This module identifies the paths and elements that are
common and similar between each pair of tree schemas.
The assumption is that similar schemas have more com-
mon paths. We adapt the sequential pattern mining algo-
rithm [2] to infer the similarity between elements and
paths. The sequential pattern mining algorithm considers
the frequent occurrences of elements as well as the sequenc-
es of elements.

The structure of a schema tree is represented by a set
of path expressions (or paths). Each path expression is
viewed as a sequence. A path expression is represented
by a unique sequence of elements following the links from
the root node to a leaf node by traversing through the
nodes in that path. A path expression, p, is denoted as
Æx1,x2, . . . ,xnæ where x1 is the name of the root node
and xn is the name of the leaf node. Let the set of path
expressions, PE, in a schema tree be {p1, p2, . . . ,pm} where
m is the number of unique paths in the tree. Using the ter-
minology of the sequential pattern mining, a sequence (or
a path) is contained by another if it is a subsequence of
that sequence. A sequence (or a path) is frequent if it
occurs in the set more than the user defined threshold
(or support). In a set of paths, a path pj is maximal if it
is not contained by another path expressions or no super
path of pj is frequent.

The task is to find the maximal frequent paths among
the set of path expressions in two schema trees. Each such
maximal frequent path represents a common structure
between the pair of trees. Unlike other data mining appli-
cations, the minimum support for finding the maximal fre-
quent paths between two trees must be 100% since similar
paths must be in both structures. Another variation in this
process is that the support count for an element should be
incremented only one per schema; even if, the schema con-
tains the same elements in two different paths.

The five phases of the sequential mining algorithm [2]
are modified to facilitate the finding of maximal similar
paths (MPEs) between two trees (a base tree TB and a
query tree TQ):
tic Relationship with the WordNet*/

uistic similarity of two words.



Table 1
Cardinality constraint compatibility table adapted from [18]

* + ? None

* 1 0.9 0.7 0.7
+ 0.9 1 0.7 0.7
? 0.7 0.7 1 0.8
None 0.7 0.7 0.8 1
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1. Sort Phase. The elements contained in each path are
sorted according to their hierarchical position in the tree
levels. The first element appearing in a path always rep-
resents the root node of the corresponding schema tree.
The remainder of the elements in the path are then
denoted as the descendent of the root node in order.

2. Transformation Phase. The elements of the path expres-
sions are mapped into the integer representation to facil-
itate the faster sequential mining process. Elements in
the path expressions defined as similar according to the
linguistic similarity coefficient (lSim) is mapped into
the same integer representation.

3. Litemset Phase. In this phase, the set of large 1-paths is
found by considering the element matching. Every simi-
lar element in the two path expressions is included in the
large 1-paths set. The large 1-paths is a set of all expres-
sions that have only one element and that is frequent.

4. Sequential Phase. This includes multiple passes over a
collection of the large paths sets in order to determine
the new larger paths progressively such as the large 2-
paths, large 3-paths and so on, until large n-paths are
found.

5. Maximal Phase. The maximal similar paths (MPE) are
found by applying the backward phase [2] to all the large
paths obtained in the sequential phase. All sub-paths
contained in the large paths are pruned out until the
maximal paths are found.

3.4. Preprocessing: The schema similarity matrix processor

A method to compute the similarity between schemas is
presented by making use of: (1) the element semantic sim-
ilarity as explained in Section 3.2; and (2) the element struc-
tural similarity obtained as the maximal large paths in
Section 3.3. The element structural similarity includes the
hierarchical position of an element in the schema. The
structural similarity covers the context of an element
defined by its ancestor (if it is not a root) and its descen-
dants in the path expressions. The XMine measures the
structural similarity by determining the similar elements
in two trees based on the common paths. The element
semantic similarity includes the linguistic and constraint
similarities between each pair of elements contained in
two maximal similar paths. The overall degree of similarity
based on the element and structural similarity is then com-
puted in the schema similarity matrix processor.

Let us assume two schemas: base schema (schemaB) and
query schema (schemaQ) that are to be compared. Base tree
TB and query tree TQ are the corresponding simplified
trees. A unique set of path expressions is obtained by tra-
versing both the base and query trees, denoted as PEB

and PEQ respectively. A set of maximal similar path
expressions (MPE) represents the common paths that exist
in both base and query tree. The corresponding path
expressions that contain a MPE from the PEB and PEQ

sets are identified.
Structural similarity: Once all the corresponding com-
mon path expressions from both trees have been obtained,
the similarity coefficient of all maximal similar paths, max-

pathSim, is measured. The maxpathSim aggregates the sim-
ilarity coefficient of two corresponding base and query path
expressions, refers to as the path similarity coefficient, path-
sim. The following is the formalization of maxpathSim:

maxpathSimðMPEkÞ¼

PjPEB j
i¼1

PEB
i 2MPEk

PjPEQj
j¼1

PEQ
i 2MPEk

pathSimðPEB
i ;PEQ

j ;ThresholdÞ

Max
PEB2MPEk ;PEQ2MPEk

ðjPEBj; jPEQjÞ

The similarity between the two path expressions (path-
Sim) is computed by measuring the linguistic, constraints,
and path name similarities of each element of PEB

i against
elements of PEQ

j . This checks a one-to-one mapping of ele-
ments in the path expressions, that is an element in PEB

i

matches, at most, one element in PEQ
j .

pathSimðPEB
i ;PEQ

j ;ThresholdÞ¼

PjPEB
i j

b¼1

PjPEQ
j j

q¼1

baseSimðeb;eqÞ �PNCðeb;PEB
i ;e1;eq;PEQ

j :e1;ThresholdÞ

MaxðjPEB
i j; jPEQ

j jÞ

where the base element similarity coefficient, baseSim, rep-
resents the semantic similarity between two names. The
path name coefficient, PNC, measures the degree of simi-
larity of elements in two given paths.

Semantic similarity: The base element similarity coeffi-
cient, baseSim, is obtained by the weighted sum of linguis-
tic similarity coefficient, lSim and the constraint similarity
coefficient, constraintSim of the elements, shown as below:

baseSimðe1; e2Þ ¼ w1 � lSimðe1; e2Þ
þ w2 � constraintSimðe1; e2Þ

where weights w1 + w2 = 1.
The linguistic similarity coefficient, lSim is defined in

Section 3.2. The cardinality constraint coefficient, con-
straintSim of two elements is determined from the cardinal-
ity constraint compatible table (Table 1) as used in [18] for
DTDs. Table 1 shows the compatibility between two oper-
ators. XSD schema is more flexible than DTDs in terms of
cardinality operations by using minOccurs and maxOccurs.
We show the mapping between the cardinality operators of
DTDs and XSDs in Table 2 and utilise the values of Table
1 for each equivalent mapping. For the operators outside
this list, if their data types are identical then 1 is returned



Table 2
Cardinality mapping between XSD and DTD

Cardinality operator minOccurs maxOccurs No. of child element(s)

[none] 1 1 One and only one
? 0 1 Zero or one
* 0 Unbounded Zero or more
+ 1 Unbounded One or more
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or else 0 is returned. The constraint coefficient is ranged
between [0, 1].

Path similarity coefficient: The path name coefficient,
PNC, measures the degree of similarity of elements in
the two given paths. The goal of this computation is
to differentiate elements that exist in both paths but
are different in their context (e.g., a patient name and
a physician name). Consider two common paths that
have two elements with the same name but appearing
in different level position (e.g., book.name and book.au-
thor.name). The context in which an element appears in
the hierarchical structure of a schema strongly contrib-
utes in determining the information that the element
models [25]. The context of an element e is given by
the path from the root element (that is the first element
in the path expression) to the element e, denoted as
e.path(root) = {root, epi, . . . ,epj, e}.

The similarity of two path names is obtained by sum-
ming up all the baseSim values between each pair of ele-
ments in two paths then normalizing it with the
maximum number of elements contained in the two paths
of the element names.

PNC ¼
P

baseSim
Maxðjdest1:pathðsource1Þj; jdest2:pathðsource2ÞjÞ

Schema similarity: Having obtained the similarity
between all the maximal similar paths (MPEs) of two trees,
the similarity between two schemas is computed by com-
bining all MPE similarity coefficients:

schemaSimðschemaB; schemaQÞ ¼

PjMPEj

k¼1

MaxpathSimðMPEkÞ

maxðjPEBj; jPEQjÞ
The similarity between each pair of schemas is mapped

into the schema similarity matrix. This matrix becomes
the input to the next phase.

3.5. An example showing the process of preprocessing

Fig. 5 shows two schemas and their respective tree rep-
resentations related to the health care system. Let us con-
sider one of them (a) as ‘base’ and another one (b) as
‘query’. The objective is to find the similarity between
them. A unique set of path expressions is obtained by tra-
versing both the base and query trees denoted as PEB and
PEQ, respectively. Every element contained in the path
expression is sorted according to their hierarchal position
in the tree.
Similar elements of the paths are mapped into the
same integer representation by referencing the linguistic
similarity table. For instance, the abbreviation of
PID M Patient ID is defined similar in the user defined
library, so both elements are assigned to the same integer
in any path expression. In addition, the use of the Word-
Net thesaurus is able to resolve the abbreviations such as
yr M year and Qty M Quantity. The tokenizer during the
element pre-processing is able to recognize the similarity
between the element names such as Service_Type M

Type_Service.
Table 3 shows the PEs of both trees. The maximal sim-

ilar path expressions (MPEs) are determined from these
PEs according to the process described in Section 3.3. In
the first iteration of the adapted a priori algorithm, each
distinct element in both sets of path expressions is a mem-
ber of the set of the candidate 1-paths, C1. The algorithm
simply scans the elements that are similar in both sets of
path expressions. The set of large 1-paths, L1, is then deter-
mined. It consists of the candidate 1-paths that exist in
both PEB and PEQ. To discover the set of large 2-paths,
L2, the algorithm joins L1 · L1 to generate a candidate
set of 2-paths, C2. Then the algorithm scans C2 to obtain
the 2-large-paths that are common in between PEB and
PEQ. The algorithm iterates this process until it finds all
the large paths.

In our example, the algorithm terminates in the sixth
pass. Table 4 shows some of the Large Paths. The back-

ward phase is now used to find the maximal similar path
among the set of large paths. Starting from L5, no paths
is deleted since there is no path sequence that contains this
large path. Then moved on to L4, the process deletes the
paths that are subsequences of the paths in L5 and thus
all the 4-large paths are pruned out. Next, the paths in
L3 that are subsequence of the 5-large paths are pruned
out. The remaining 5-large paths in L3 are maximal. They
are the first five rows as shown in Table 5. Finally, all the
paths in L2 and L1 are pruned out since they all exist in the
larger paths. Table 5 lists all the MPEs. The table also
includes the corresponding PEB and PEQ that contain the
MPE.

For each MPE, the path similarity coefficient between
each pair of the base and query paths is computed by mea-
suring the baseSim and PNC of all pairs of elements in
both paths. Let us compute the maximal similarity path
coefficient of:MPE4 = Æ(HomeVisit) (Patient) (Phone)æ that
consists of:

PEB7 = Æ(HomeVisit) (Patient) (Phone) (Area)æ
PEB8 = Æ(HomeVisit) (Patient) (Phone) (Number)æ
PEQ4 = Æ(HomeVisit) (Patient) (Phone)æ

Here, the pairs of element names with no semantic sim-
ilarity are not shown. We have:

pathSimðPEB7; PEQ4; 0:3Þ ¼
ð1:0Þ þ ð1:0Þ þ ð1:0Þ

Maxð4; 3Þ ¼ 0:75



Fig. 5. Base (a) and query (b) documents with their corresponding trees.

Table 3
Equivalent transformed path expressions for both trees

PE ID Original path expressions Transformed path expressions

PEB 1 Æ(HomeVisit) (Patient) (Name)æ Æ{1}{2}{3}æ
7 Æ(HomeVisit) (Patient) (Phone) (Area)æ Æ{1}{2}{10}{11}æ
8 Æ(HomeVisit) (Patient) (Phone) (Number)æ Æ{1}{2}{10}{12}æ
16 Æ(HomeVisit) (Patient) (Services) (Product) (Quantity)æ Æ{1}{2}{14}{22} 24}æ

PEQ 1 Æ(HomeVisit) (Patient) (Name)æ Æ{1}{2}{3}æ
4 Æ(HomeVisit) (Patient) (Phone)æ Æ{1}{2}{10}æ
11 Æ(HomeVisit) (Patient) (Services) (Product) (Quantity)æ Æ{1}{2}{14}{22}{24}æ

R. Nayak, W. Iryadi / Knowledge-Based Systems 20 (2007) 336–349 343
pathSimðPEB8; PEQ4; 0:3Þ ¼
ð1:0Þ þ ð1:0Þ þ ð1:0Þ

Maxð4; 3Þ ¼ 0:75

maxpathSimðMPE4Þ ¼
ð0:75Þ þ ð0:75Þ

Maxð2; 1Þ ¼ 0:75

The maxpathSim for each MPE is calculated and the sche-

maSim is determined by combining them all.
3.6. Data mining: Clustering the schemas according to their

similarity

The constrained hierarchical agglomerative clustering
method is used for grouping similar schemas. This method
uses a bottom-up strategy in which initially each object is a
cluster and then the pair of clusters are repeatedly merged



Table 4
Large paths in base and query documents

Large 1-path (L1) Large 2-path (L2) Large 5-path (L5)

Total elements: 17 Total elements: 46 Total elements: 6

All:Æ{1}æ,Æ{2}æ, Æ{3}æ, Æ{4}æ, Æ{9}æ, Æ{10}æ, Æ{13}æ,
Æ{14}æ, Æ{15}æ, Æ{16}æ, Æ{17}æ, Æ{18}æ, Æ{19}æ,
Æ{20}æ, Æ{21}æ, Æ{22}æ, Æ{24}æ.

Sample:Æ{1}{2}æ, Æ{1}{3}æ, Æ{1}{4}æ, Æ{1}{9}æ,
Æ{1}{10}æ, Æ{1}{13}æ, Æ{1}{14}æ, Æ{1}{15æ,
Æ{1}{16}æ, Æ{1}{17}æ, Æ{1}{18}æ, Æ{1}{19}æ, . . .. . .. . .. . .. . .. . .

All:Æ{1}{2}{14}{15}{16}æ,
Æ{1}{2}{14}{15}{17}æ,
Æ{1}{2}{14}{15}{18}æ,
Æ{1}{2}{14}{19}{20}æ,
Æ{1}{2}{14}{19}{21}æ,
Æ{1}{2}{14}{22}{24}æ,

Table 5
Corresponding base and query path expressions, PEB and PEQ, for each MPE

MPE Corresponding PEB and PEQ

MPE1 Æ(HomeVisit) (Patient) (Name)æ PEB1, PEQ1

MPE2 Æ(HomeVisit) (Patient) (Address)æ PEB2, PEB3, PEB4, PEB5, PEQ2

MPE3 Æ(HomeVisit) (Patient) (Gender)æ PEB6,PEQ3

MPE4 Æ(HomeVisit) (Patient) (Phone)æ PEB7, PEB8 PEQ4

MPE5 Æ(HomeVisit) (Patient) (PID)æ PEB9, PEQ5

MPE6 Æ(HomeVisit) (Patient) (Services) (Date) (Month)æ PEB10, PEQ6

MPE7 Æ(HomeVisit) (Patient) (Services) (Date) (Day)æ PEB11, PEQ7

MPE8 Æ(HomeVisit) (Patient) (Services) (Date) (Year)æ PEB12, PEQ8

MPE9 Æ(HomeVisit) (Patient) (Services) (Service_Type) (Price)æ PEB13, PEQ9

MPE10 Æ(HomeVisit) (Patient) (Services) (Service_Type) (Time)æ PEB14, PEQ10

MPE11 Æ(HomeVisit) (Patient) (Services) (Product) (Quantity)æ PEB16, PEQ11
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until the number of clusters is sufficiently small or until cer-
tain termination conditions are satisfied [36]. The reasons
to use the hierarchical method are manyfold. Firstly, the
similarity of the clusters is based on the number of com-
mon elements that the schemas share. There may be sche-
mas that form the small and reasonably cohesive clusters,
as well as the schemas that are not part of the particularly
cohesive groups.The type of clusters desired is therefore
globular in nature. This algorithm has been shown to be
efficient at discovering the arbitrarily shaped clusters.

Secondly, the algorithm repeatedly merges the clusters
to form a final solution. Therefore this clustering process
can be analysed in the post-processing phase to form a
hierarchy of schema classes. Thirdly, the algorithm used
should be resistant to noise and outliers. Since the data col-
lection can have a schema that may not be related to other
schemas, outliers may be present. This algorithm uses a k-
nearest neighbour graph in the partitioning phase that
ensures to reduce the effects of noise and outliers. Fourthly,
the algorithm used should not require the number of clus-
ters to be pre-determined because the relationships between
data are unknown. Finally, because the volume of query
data can be very large, the algorithm should be scalable.

We use the wCluto web-enabled data clustering appli-
cation [31] for clustering the XML data. In order to use
Wcluto, XMine first generated a matrix containing the
schemaSim coefficient (common path similarity coeffi-
cient) between the trees in the data source (pair-wise sim-
ilarity) using the path similarity threshold of 0.7. The
Wcluto takes in the schema similarity matrix and per-
forms the clustering process. The ‘Complete-Link’ merg-
ing criterion function is chosen for computing the
distance between clusters.
Based on the clustering results, the discovered schemas
clusters serve as a basis for the visualization of the cluster-
ing solution and the generation of schema class hierarchy
in the last phase of the post-processing.

3.7. Post processing: Generating a hierarchy of schema

classes

In the final phase, the discovered schema patterns are
visualized as a tree of clusters called dendogram (an exam-
ple is shown in Fig. 10). The dendogram shows the clusters
that are merged together and the distance between these
merged clusters. This facilitates the generalization and spe-
cialization processes of the clusters to develop an appropri-
ate schema class hierarchy. Each cluster, that contains a set
of similar schemas, forms a node in the hierarchy, where all
nodes (or clusters) are at the same conceptual level. Each
cluster may be further decomposed into several schema
sub clusters, forming a lower level of the hierarchy. Clus-
ters may also be grouped together to form a higher level
of the hierarchy.

A new schema can now be generalized. First, the schema is
generalized to the identifier of the lowest subclass to which
the schema belongs. The identifier of this subclass can then,
in turn, be generalized to a higher-level class identifier by
climbing up the class hierarchy. Similarly, a class or a sub-
class can be generalized to its corresponding superclasses
by climbing up its associated schema class hierarchy.

4. Empirical evaluation and discussion

Dataset: Table 6 summarizes the major characteristics of
the schema collection used in experiments. Each domain



Table 6
The input data set

Domain No. of sources No. of nodes Nesting levels

Automobile 9 10–40 2–10
Property 16 20–50 5–15
Travel 52 20–50 2–16
Health 20 40–80 5–8
Flights 20 20–100 4–15
Publication 40 20–500 4–10
Hotel Messages 25 50–1000 7–20

Fig. 7. The FScore measure.

Fig. 8. The intra-cluster similarity.

Fig. 9. The inter-cluster similarity.
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consists of a number of different domain categories that
have the structural and semantic differences. The schemas
from the same domain also vary in structures and seman-
tics and might not be considered similar enough to be
grouped into the same clusters. Fig. 6 illustrates the aver-
age similarity degree (using the schemaSim measurement)
between schemas in the seven subject domain categories.
The average similarity is estimated at approximately 0.6,
showing that the schemas are much different even though
they come from the same domain.

Evaluation measures: The validity and quality of the
XMine clustering solutions are verified using two common
evaluation methods: (1) the intra-cluster and inter-cluster
quality and (2) the FScore measure.

Result and analysis: Fig. 7 shows the FScore of the data-
set over the 18 different clustering solutions. The FScore

result of the 9-clusters solution shows the best FScore.
When the process reaches to the 13-clusters solution, the
clustering quality is stabilized. The objective of clustering
is to maximize the intra-class similarity in clusters and to
find the compact clusters. XMine demonstrates (Fig. 8) this
by the decreasing tendency in the average scattering com-
pactness of clusters as the number of clusters increases.
As the clustering process continues, clusters are further
decomposed into smaller sub clusters that contain more
highly similar schemas. Thus as the intra-cluster scattering
compactness decreases, the more compact schemas result in
the clusters. And, after achieving the optimum clusters, the
solution is stabilised.

Another objective of clustering is to minimize the inter-
class similarity or to find the well separated clusters. The
Fig. 9 confirms that the average external similarity between
Fig. 6. The average schem
the clusters also decreases as the number of clusters
increases. As the clustering process continues, clusters are
produced consisting only of highly similar schemas. Based
on these observations, the 13-clusters solution produces a
better quality of clusters compared to the 9-clusters solu-
tion due to the lower intra-cluster scattering and the lower
inter-cluster similarity.

The members of the clusters are also important to exam-
ine the correct clustering of the similar schemas into the
a similarity coefficient.
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Fig. 10. The cluster decomposition for 9 and 13 number of clusters.
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related classes. Fig. 10 displays the clusters decomposition
for 9 and 13 numbers of clusters. The shaded nodes in the
hierarchy represent the actual clusters of the schemas. The
unshaded nodes represent the generalization class of the
low-level schema classes. Each node is labelled with the
class name and the size of the class.

Based on the cluster decompositions of all solution,
we can say that the progression in clustering process
achieves more disjoint and specific sub-groups (i.e., less-
er unclassified patterns). However, the size of these clas-
ses becomes very small. In fact, these classes may not
be sufficient to consider as an independent class. These
clusters may only be holding one specific schema (as
it happens in the case with 18 clusters), and this may
be an outlier.

XMine is also examined to test the sensitivity in comput-
ing the schema similarity coefficient (schemaSim). Without
the semantic relationship, XMine is still able to handle the
linguistic similarity between element names relatively more
effectively (Fig. 12) than without the syntactic relationship
Fig. 11. Effect of the syntactic relationship on clustering.

Fig. 12. Effect of the semantic relationship on clustering.
(Fig. 11). Therefore, the syntactic similarity measure is
more reliable than the semantic similarity measure in mea-
suring the linguistic similarity of two elements, for this par-
ticular data set.

Fig. 13 shows that the PNC measure increases the cor-
rectness of the overall similarity of schemas. Without inclu-
sion of PNC, the element names with the same semantics
but occurring in different positions in the hierarchy path
name (i.e. book.title and book.author.title) cannot be iden-
tified and discriminated. Hence the use of path name,
PNC, shows a better quality of clustering solution com-
pared to only considering the single element name
matching.

The sensitivity of the XMine in handling the semantic
and syntactic similarities between elements depends on
the setting of the semantic (d) and syntactic (l) threshold
values respectively. Fig. 14 shows that the 0.8 threshold
yields the best values in this data.

The schemas with errors (grammatical or typo) would
result in low matched values in terms of their element sim-
Fig. 13. Influence of PNC.

Fig. 14. Thresholds in clustering.
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ilarity. Hence, by adjusting the threshold values, two ele-
ments names with the semantic and syntactic errors can
still be accepted as a matched candidate. However, the
drawback of setting a low threshold value is a less restric-
tive matching process. The element pre-processing plays a
significant role in element matching process. In XMine,
parsing of element names into a set of tokens assists in
the automatic selection of possible meanings of the errone-
ous words. Additionally, the alternative string comparison
during the linguistic matching improves the semantic simi-
larity measure.

5. Related work

Research on measuring the structural similarity and
clustering of XML data is gaining momentum. We show
a taxonomy of these approaches in Fig. 15 as broadly clas-
sified into structure level and element level based similarity
approaches.

The structure-level similarity approaches can be divided
into three different research directions; (1) to detecting
and measuring the structure and content similarities
between data; (2) to detecting and measuring the structural
similarity between data and schema; (3) to determining the
schema information from semistructured data relying on
their structural similarities.

The approaches along the first direction can be further
decomposed into approaches developed for (1) document
clustering [11,17,19,24,26], (2) change detection in docu-
ments [30], and (3) approximate querying of documents
[29]. Most of the works developed in these directions rely
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on the notion of the tree edit distance developed in the
combinational pattern matching [7,35]. Recently some
researchers have developed the techniques for frequent tree
patterns mining [7]. However, none of these methods take
into consideration the hierarchical information (i.e. the
level of hierarchy at which an element locates) when repre-
senting frequent patterns. It prevents the use of the level
path information of similar elements to discover the syno-
nym elements for quantifying the similarity between docu-
ments for clustering. Thus by ignoring the hierarchical
position, these techniques become too restrictive and
incompatible for clustering the similar hierarchical trees.

The XMine approach adapts the sequential mining
approach [2] to find the maximal paths similar to Lee
et al.[17]. [17] defines the structural similarity only based
on the ‘ratio’ between the maximal similar paths and the
paths of the base document. They however do not include
the element level hierarchy position, leading in erroneous
match between two names occurring at two different posi-
tions or with different context. XMine overcomes this by
including PNC in calculation.

There are techniques [4,28] that aim at measuring the
structural similarity between data and schema in the con-
text of XML. Some of these techniques present documents
as edge-labelled graphs ignoring the constraints on the
repeatability or alternatives of elements in the XML sche-
mas. Additionally, [4] can not be directly applicable to clus-
ter the documents without any knowledge of their schemas,
and is not able to point out dissimilarities among the doc-
uments referring to the same schema. However, this
approach takes into account the context of element into
re
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calculation. This concept is adapted in XMine during the
similarity computation process.

Nevertheless, majority of existing approaches measure
the structural similarity between the XML documents;
thus, their goals are substantially different from the XMine
methodology, which measures the structural similarity
between a set of trees representing the schemas. The tree-
edit distance approach is also not sufficient enough to mea-
sure the semantic and hierarchical structure of the schemas,
since it only concerns with the existence of the different ele-
ments in two trees, but not the cardinality.

The element-level similarity matching approaches known
as schema matching determines the semantic correspon-
dences between elements of two schemas. The main differ-
ence between the schema matching approach and the tree
editing problem is that in former, the primary component
in determining the similarity between the schemas is ele-
ments of the trees with respect to their semantic names
and name structures similarity. On the other hand, the tree
editing problem concerns with the whole tree structure sim-
ilarity without concisely taking into account the detailed
elements components in the tree. The tree edit problem
treats the label of each node in the tree as a second prefer-
ence. For instance, the cost of relabelling is assumed to be
cheaper than that of deleting a node with the old label and
inserting a node with the new label. In other words, schema
matching is more concerned on the internal matching of
the tree, whereas tree edit problem is more concerned on
the high-level tree matching.

Researchers have approached schema matching for
XML data at three different levels as shown in Fig. 15.
The Instance-only level approaches sometimes fail to cap-
ture the structure information of the XML data. Machine
learning techniques are used to improve accuracy but they
can be very computationally expensive[16].

Schema matching at the schema-only level approaches

can be used for mapping a collection of the heterogeneous
XML-Schemas [8,14,18,20,22]. The document community
has also proposed the techniques to automate the process
of the schema matching to deduce the transform scripts
which can rearrange and modify the associated data [6].
The drawback is that finding similar elements at this level
can produce more mismatches of elements as no instance
data is provided. Therefore, the accuracy of the mapping
is depended on the technique that is used for the linguistic
and structure matching at the schema only level approach.
The instance or schema only level approach can have some
drawback in finding the similar elements between the XML
documents. Therefore, some researchers have combined
both the instance and schema information for schema
matching [9]. These approaches however need both the
XML documents and their associated schema definitions
to be available for the mapping.

XMine comes closer to a number of the schema only
level approaches such as XClust [18], Deep [14], Cupid
[20], COMA [8], SF [22]. However, the main difference
between these approaches and XMine is that the structural
similarity is derived based on the maximal similar paths
obtained by using the adapted sequential pattern mining
algorithm. Thus, this eliminates the element-to-element
matching process, making XMine an efficient and accurate
method.

6. Conclusions and future work

The potential benefits of the rich semantics of XML
have been recognized widely for enhancing document
handling. A schema clustering process improves the doc-
ument handling process in the digital libraries and XML
repositories by organising the heterogeneous schemas
into groups. This paper presented the XMine methodol-
ogy that accurately clusters the schemas by considering
both structural and semantic information of elements.
The element structural similarity is the hierarchical posi-
tion of the element in the schema. XMine includes the
structural information in the similarity measurement by
finding the maximal similar paths between schemas.
The context of an element, which is defined by its level
position among other elements in a path expression, is
included in measuring the similarity between the maximal
paths. This takes into account the elements with the
same name but in different level positions in the hierar-
chical tree. The element semantic similarity includes the
linguistic and constraint similarities between the elements
contained only in the maximal large paths. Thus, this
eliminates the element-to-element matching process of
two trees and rather focuses only on those elements
appearing in the maximal paths.

The evaluation shows the effectiveness of XMine in cat-
egorizing the set of heterogeneous schemas into the rele-
vant classes that facilitate the generalization of an
appropriate schema class hierarchy. The sensitivity evalua-
tion shows that the XMine pre-processing components
influence the quality of clusters. The XMine’s semantic
and structural similarity measures ensure that equivalent
concepts occurring in completely different structures, and
completely independent concepts that belong to isomor-
phic structures, are recognised and considered appropriate-
ly during the clustering process.

This schema clustering approach can also easily be
applicable to the document instances after representing
each document as a tree. Moreover, the methodology is
applicable to general web documents after performing
XHTML conversion, and then representing the documents
as the trees.

References

[1] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From
Relations to Semistructured Data and XML, Morgan Kaumann,
California, 2000.

[2] R. Agrawal, R. Srikant, 1996, Mining Sequential Patterns: General-
izations and Performance Improvements. Paper presented at the fifth
International Conference on Extending Database Technology
(EDBT’96), France.



R. Nayak, W. Iryadi / Knowledge-Based Systems 20 (2007) 336–349 349
[3] P. Berkhin, 2002. Survey of Clustering Data Mining Techniques:
Technical Report, Accrue Software, San Jose, CA.

[4] E. Bertino, G. Guerrini, M. Mesiti, A matching algorithm for
measuring the structural similarity between an XML document and a
DTD and its applications, Information Systems 29 (1) (2004) 23–46.

[5] S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, J.
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