
Schema Matching for Transforming Structured Documents
Aida Boukottaya

HEC/UNIL (University of Lausanne) &
Global Computing Center

EPFL (Swiss Federal Institute of Technology)
1015 Lausanne, Switzerland

Aida.Boukottaya@epfl.ch

Christine Vanoirbeek
Media Research Group &
Global Computing Center

EPFL (Swiss Federal Institute of Technology)
1015 Lausanne, Switzerland

Christine.Vanoirbeek@epfl.ch

ABSTRACT
Structured document content reuse is the problem of restructuring
and translating data structured under a source schema into an
instance of a target schema. A notion closely tied with structured
document reuse is that of structure transformations. Schema
matching is a critical strep in structured document
transformations. Manual matching is expensive and error-prone. It
is therefore important to develop techniques to automate the
matching process and thus the transformation process. In this
paper, we contributed in both understanding the matching
problem in the context of structured document transformations
and developing matching methods those output serves as the basis
for the automatic generation of transformation scripts.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Preparation.

General Terms
Documentation, Languages.

Keywords
Document Structure Transformations, Schema matching.

1. Introduction
The need for developing methods and tools, that support data
exchange and reuse has increased over the years, especially with
the proliferation of Web data sources deploying a variety of data
models and encoding syntaxes. XML (eXtended Markup
Language) has clearly emerged as the most relevant
standardization effort for structuring document and data on the
Web; it leverages a promising consensus on the encoding syntax
for both human and machine. However, reusing XML documents
remains a challenging task. In XML document content reuse, a
document (or a part of document) structured under one schema
must be restructured and translated into an instance of a different
schema. Thus, a notion tied to structured document reuse problem
is that of structure transformations. This is typically attained in
real world by writing translators encoded on a case-by-case basis
using specific transformation languages. Currently the best known

and widely adopted language for transforming structured
documents is XSLT [22]. However XSLT is a powerful
transformation language, it has several drawbacks. Simple
transformations require the user to write a program, which needs
non-trivial programming skills. Faced with the complexity of
current structure transformation languages, several simpler and
highly declarative transformation languages have been introduced.
These languages try to keep a manageable balance between
complexity and expressiveness. Authors in [19] propose a new
language called Paired SynTrees which extends TT grammar with
XPath expressions and a set of boolean conditions (including
existence testing expressions and function constraints) in order to
localize nodes in a tree. Special graphical tools have been also
proposed to assist the specification of the transformations [15],
[25]. Authors in [20] give an overview of existent structure
transformation languages and tools.However, such languages and
tools shield the user from programming effort; they require that a
mapping between each source and target XML representations is
carefully specified. Manual mapping is time consuming and thus
especially unacceptable for applications where the information
sources change frequently. Moreover, since the XML schemas can
be very diverse, the mappings created by the expert are often
complex. This complexity makes them hard to maintain when
original XML schemas change.

This paper seeks to automating the process of mapping discovery
(identified as schema matching process) and thus automatically
deducing from such mappings the transform scripts which can
rearrange and modify the associated data. The paper is organized
as follow: section 2 describes related work. In section 3 and 4, we
respectively propose a data model for XML Schemas and point a
set of structure transformation operations. Section 5 details the
proposed matching techniques. An evaluation study is presented
in section 6. Finally, section 7 describes briefly the mapping
structure and XSLT generation.

2. Related Work
Several approaches focusing on automating XML document
transformations has been recently proposed by the document
community. Examples include the work done in [11], where
authors propose a syntax directed approach for automating
structure transformations between two grammars based on finite
state tree transducer. The idea behind this work is to generate a
transformation semi-automatically if the user defines a matching
between elements containing the text of the document (i.e.
leaves). This approach presents several limitations: first it works
only if the two grammars have common parts, which restricts the
scope of transformations to local transformations. Moreover, this
approach is unable to resolve all the heterogeneities that may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’05, November 2–4, 2005, Bristol, United Kingdom.
Copyright 2005 ACM 1-59593-240-2/05/0011...$5.00.

101

occur between structured documents: authors restrict themselves
to transformations for which certain types of structure elements in
the source document are transformed to the same types of
elements in the target document. For example, a list of repeating
nodes in the source document can only be transformed into a list
that contains the same number of repeating elements. The authors
of [18] propose an approach for automating the transformations of
XML documents. To this end they define a set of DTD
transformation operations that establish the semantic relationships
between two DTDs. The approach is based on a tree matching
algorithm, called DMatch (DTD Match), to discover automatically
a sequence of operations that transforms a source DTD into a
target DTD. The matching process is based on both provided
auxiliary semantic information and a cost model. The latter model
is based on heuristics functions for choosing transformation
operations among multiple alternatives. This approach presents
several limitations. First the matching algorithm used is only able
to discover one-to-one correspondences between DTDs and does
not deal with many-to-many matches. Second, the matching
algorithm requires additional semantic information to work
correctly, which limits the scope of its application since such
semantic information is not always available. Finally, the
matching algorithm used is inspired by work done in tree
matching and is unable to deal with the current XML schema
model.

Additionally to document community, database and artificial
intelligence communities have widely considered schema
matching problem in many application domains such as data
integration, and peer-to-peer data management [5], [6], [9], [16],
[17] . With the growing use of XML, several matching algorithms
take into consideration the hierarchical structure of XML. In the
following, we present some examples and check their applicability
in the context of XML data transformations.

Cupid (Microsoft Research)

Cupid is a hybrid matcher combining several matching methods
[12]. Cupid transforms the original XML schemas into trees and
then performs a bottom-up structure matching. The basic
assumption behind the structure matching phase of Cupid is that
much of the information content is represented in leaves and that
leaves have less variation between schemas then internal
structures. Thus the similarity of inter-nodes is based on the
similarity of their leaf sets. Schema structure in Cupid is used as a
matching constraint, that is, the more the structures of the two
nodes are similar, and more the two nodes are similar. For this
reason, Cupid faces problems in the cases of equivalent concepts
occurring in completely different structures, and completely
independent concepts that belong to isomorphic structures.

Similarity Flooding (Stanford Univ. and Univ. of Leipzig)

In [13], authors present a structure matching algorithm called
Similarity Flooding (SF). For computing structural similarities,
SF relies on the intuition that nodes of two distinct graphs are
similar when their adjacent nodes are similar. The spreading of
similarities in the matched models is reminiscent to the way how
IP packets flood the network in broadcast communication. An
iterative process is used to propagate similarities between nodes,
where in every iteration the similarity of a map pair is
incremented by the similarity of its neighbours. An important
assumption behind the algorithm is that adjacency contributes to

similarity propagation. Thus, the algorithm will perform
unexpectedly in cases when adjacency information is not
preserved. Furthermore, SF ignores all type of constraints while
performing structural matching. Constraints like typing and
integrity constraints are used at the end of the process to filter
mapping pairs with the help of user.

As we can see, proposed structural matching methods remain
insufficient and very limited (generally deals only with DTDs and
exploits few structural characteristics, essentially parent-child
relationships). Convinced that the structural organisation in XML
documents inferred some semantics of the data and traduced the
designer point of view, a solution to XML schema matching
problem should exploit this information in a manner that increase
the matching accuracy. Furthermore, current schema matching
algorithms only focus on discovering 1-1 mappings, also called
direct mapping. The output result is a confidence score (ranging
in [0,1]) between schemas’ elements. When addressed the
problem of automating document transformations, such output is
often insufficient. First, because complex mappings (involving
more than one source and/or target elements) make up a
significant portion of discovered mappings in practice. Second, to
generate a transformation script, scores between 0 and 1 are
insufficient (we need to further precise transformation operations).
In the remaining, we propose different methods and algorithms to
solve such problems.

3. The Data Model
As we already mention in section 2, up to now few existent XML
schema matching algorithms focus on structural matching
exploiting all W3C XML schemas [23] features. In this section,
we propose an abstract model that serves as a foundation to
represent conceptually W3C XML schemas and potentially other
schema languages [2]. We model XML schemas as a directed
labelled graph with constraint sets; so-called schema graph.
Figure 1 illustrates a schema graph example.

3.1 Schema graph nodes
We categorize nodes into atomic nodes and complex nodes.
Atomic nodes have no edges emanating from them. They are the
leaf nodes in the schema graph. Complex nodes are the internal
nodes in the schema graph. Each atomic node has a simple
content, which is either an atomic value from the domain of basic
data types (e.g., string, integer, date, etc.); or a constructional
value, meaning a list value or a union value. The content of a
complex node, called complex content, refers to some other nodes
through directed labelled edges. In Figure 1, nodes University and
Library are complex nodes, while nodes Name and Location are
atomic nodes.

3.2 Schema graph edges
Each edge in the schema graph links two nodes capturing the
structural aspects of XML schemas. We distinguish three kinds of
edges: (1) containment relationship, denoted c, that is a
composite relationship, in which a composite node (“whole”)
consists of some component nodes (“parts”); (2) of-property
relationship, denoted p, that specifies the subsidiary attribute of a
node; and (3) association relationship, denoted a, that is a
structural relationship, specifying that both nodes are conceptually
at the same level. Association relationships essentially model

102

key/keyref and substitution group mechanisms. They are generally
bidirectional. Two association relationships are represented in
Figure 1. The first association between the two nodes Book and
Monograph is used for modelling the substitution group relation
between the two nodes. While the second association relation
between Journal-article and Journal specifies a key/keyref
relation. Visually association edges are depicted as dashed lines.

3.3 Schema graph constraints
Different constraints can be specified with XML Schema
language. These constraints can be defined over both nodes and
edges. Typical constraints over an edge are cardinality constraints.
Cardinality constraints over a containment edge specify the
cardinality of a child with respect to its parent. Cardinality
constraints over an of-property edge imply for example an
optional or mandatory attribute for a given node. The default
cardinality specification is [1..1]. We also distinguish three kinds
of constraints over a set of edges: (1) ordered Composition,
defined for a set of containment relationships and used for
modelling XML Schema “sequences” and “all” mechanisms; (2)
exclusive Disjunction, used for modelling the XML Schema
“choice” and applied to containment edges; and (3) referential
constraint, used to model XML schema referential constraints.
Referential constraints are applied to association edges, and are
generally modelled through a join predicate. As example, the
association edge between Article and Journal with the predicate
Article/JournalRef = Journal (as typical join condition). Other
constraints are furthermore defined over nodes. Examples include
uniqueness and domain constraints. Domain constraints are very
broad. They essentially concern the content of atomic nodes. They
can restrict the legal range of numerical values by giving the
maximal/minimal values; limit the length of string values, or
constrain the patterns of string values.

Figure 1. A Schema Graph example.

3.4 Type Binding and Type Hierarchy
In addition to elements and attributes declarations, XML schema
introduced typing mechanisms. Built-in simple types as well as
their restrictions are represented as domain constraints within the
schema graph. User-defined types are not represented in the
schema graph but represented in a type table and a binding from
schema graph nodes to types are established. The concept of

Schema graph as described above does not also include features
like type extensions and abstract types. Extending a type means to
add elements and/or attributes, which always results in a complex
type. At a conceptual level, this refers to a
generalisation/specification relationship. Such relationships are
represented by the mean of a type hierarchy. Let us assume for
example that we have an abstract type PUBLICATION and two
subtypes of PUBLICATION respectively ARTICLE and BOOK.
This will be represented in a type hierarchy by two specification
relationships respectively between PUBLICATION and
ARTICLE and PUBLICATION and BOOK. We also specify that
PUBLICATION type is abstract (meaning that it may not have
direct instances, but its concrete subtypes may). If nodes Article
and Book in the schema graph of Figure 1 are of types ARTICLE
and BOOK, a binding between types and schema graph nodes is
generated.

4. Transformation operations
To motivate our choice of transformation operations, we list the
following problems we must face in matching two XML schemas:

• Frequently, schema designer tends to qualify semantically
similar concepts using different names. For this we consider
a rename operation defined as follow: Rename: t = rename
(s), generates a construction1 that is the same as a
construction s, but with a different name t.

• For a target node, a particular source may have (1) a proper
subset of the desired values or (2) a proper superset of the
desired values. For such case, we propose two operations
Union defined as follow: Union: t = union (s1,s2), generates
a construction t whose content is the union of s1 values and
s2 values; and Selection defined as follow: Selection: t =
SelectP (s) (where P is a predicate) generates a construction t
whose content is the part of content of s that satisfies the
predicate P.

• Schema designers do not always choose to represent values
at the same level of atomicity. For example, an author name
is represented in a given schema using an element Name.
While in an other schema, it is separated into a First-Name
and a Last-name. For such cases, we define two operations
Merge and Split as follow: Merge: t = merge (S1….Si),
generates a construction t whose value is obtained by
concatenating s1….si values; and Split: (t1…ti) = splitcriteria
(s), where t1…ti are obtained by splitting a construction s
respecting to a separation criterion. An example of separation
criterion is “white space” in the case of strings.

• A target construction may be obtained by applying a natural
join (as in relational schemas) to source constructions. We
define a join operation as follows: Join: t= joinP(S1,S2),
generates a target construction t which is the natural join of
S1 and S2 under the predicate P.

• Frequently we need some specific functions to transform the
content of source values into target values. Such functions
include for example unit conversion, date format

1 Construction refers to schema elements, or attributes, or

relationships.

103

transformations, mathematical functions such as min, avg,
div, etc. For such cases, we introduce a new operation apply
defined as follow: Apply: t = applyf (s1…si) where f is a
function that takes s1…si values and returns t, whose value
corresponds to f (s1…si).

• For the case where we have a one-to-one matching without
any modification, we provide an operation called connect:
Connect: t = connect (s), generates a construction t which
has the same content and label as s.

5. Matching Process
To match schema graphs, we make use of four basic matching
criteria (1) linguistic matching, (2) datatype compatibility, (3)
Designer type hierarchy and (4) structural matching.

5.1 Linguistic matching
The aim of this phase is to compute the similarity between schema
nodes based on the similarity of their labels. To perform linguistic
matching, we make explicit the meaning of used element names
and establish semantic relationships between them based on
WordNet [8]. Most of schema matching algorithms suggest the
use of WordNet for linguistic matching, but generally gave few, if
any details about how they exploit WordNet. Our linguistic
matching is inspired essentially from Hirst and St-Onge’s work
[14]. When attempting to find a relation between two words, each
synset (set of synonyms representing a sense associated to a word)
of the first word must be considered with each synset of the
second word, looking for a possible connection between some
synset of the first word and some synset of the second. The idea
behind Hirst and St-Onge’s measure of semantic relatedness is
that two concepts are semantically close if their WordNet synsets
are connected by a path that is not too long and that does not
change direction too often. A set of allowable paths have been
then defined. The linguistic similarity between two words is
computed based on the path relating them as follows:

 c – Path length – k × number of changes of direction2
Moreover, based on the classification of allowable paths, we
identified four kinds of semantic relations between words, namely
equivalent (≡), Broarder than (⊇), Narrower than (⊆), and related
to (∼). The detailed algorithm is given in [2]. The same algorithm
is also applied to type names. To simplify the comprehension of
our approach, we assume in this paper that nodes have the same
names as their types.

5.2 Datatype compatibility
XML schema recommendation provides many different datatypes
and regular expressions. It is probably the ideal set of datatypes
since it is refined enough for the purpose of schema matching. In
fact, XML schema allows the definition of very specific datatypes.
For this, we make use of built-in XML schema datatypes

2 c and k are constants. The choice of c and k were done on
running experiments based on examples provided in [3] where
authors compare several semantic distance measure algorithms.
C=8 and k=1, thus, the longer the path and the more changes of
direction, the lower the weight.

hierarchy [24] in order to compute datatype compatibility
coefficient. XML schema datatypes are classified in multiple
categories (called primitive datatypes) including for example
Duration, Boolean, String, Decimal, etc. Each category has
several derived datatypes. Two datatypes are considered to be
similar if they belong to the same datatype category, and their
datatype compatibility depends on their respective position in
XML schema datatype hierarchy. Based on XML Schema
datatype hierarchy, we construct a datatype compatibility table,
such as the one used in [12] that gives a similarity coefficient
between two given datatypes. Moreover, we also make use of
imposed constraints (expressed by means of facets) over datatypes
in order to refine the datatype compatibility coefficient (two
datatypes belonging to the same category and presenting similar
set of constraints are more likely to be similar)3. For example,
two string datatypes (or string derived datatypes) having similar
length constraints and two integers having similar numerical value
ranges are more likely representing similar real word entities. We
limit the scope of datatype compatibility to atomic nodes that are
already similar using linguistic matching method. Finally we
update the linguistic similarity coefficient of atomic nodes by
including their datatype compatibility.

5.3 Designer Type hierarchy
As mentioned in section 3.4, XML schema features concerning
sub-typing, abstract types and substitution group mechanisms
traduce the designer point of view and could be used as a set of
meta-data to help the matching process to discover both direct and
complex mappings. In the following, we present some examples
of such features and show how they can be used to deduce match
candidates: (1) Abstract Types: Let us consider a source schema
where two elements Journal-Article and Procceding-Article are
declared respectively of types JOURNAL-ARTICLE and
PROCEEDING-ARTICLE (we use the same appellation for
elements and types to simplify the comprehension of the
example). Assume that these two types are subtypes of an abstract
type ARTICLE. Consider a target schema where only an element
Article of type ARTICLE is presented. Based on the fact that
JOURNAL-ARTICLE and PROCEEDING-ARTICLE are subsets
of type ARTICLE in the source schema and the type ARTICLE in
the source schema matches the type ARTICLE in the target
schema, one can deduce the following complex mapping: the
union of source elements Journal-article and Proceeding-article
matches the target element Article. This kind of hints may also
provide wrong matches, let us keep the same source schema, but
consider the target schema as the schema represented in Figure 1,
element Article in the target schema corresponds to element
Journal-Article in the source schema and not to the union of
elements Journal-article and Proceeding-article. Such wrong
matches can be corrected by the structural matching techniques
described in section 5.4.

3 Although XML Schema offers specific datatypes, those are

usually not exact and constraints are often incomplete, since
they are not a necessity, but merely a convenience for the
schema designer. Our use of datatypes constraints is restricted
to some facets. For example, we do not consider patterns
comparison. Works such as [7] and [26] can be used to extend
datatype compatibility measure.

104

(2) Substitution Group: Two substitutable elements are
conceptually at the same level. Let us consider a source schema
where elements book and monograph are substitutable and a
target schema where element publication is similar (by linguistic
matching) to the source element book. Since in the source schema
elements book and monograph are substitutable, a direct match
between monograph and target schema element publication can
be inferred.

The result of this step is a set of direct and complex mappings
(essentially involving Union/Selection operators). Such mappings
will be kept or rejected using either structural matching
techniques or user intervention. In the case where type hierarchy
is not available, we also make use of semantic relationships
discovered by the linguistic matching to derive complex matches.
However, we give the priority to designer type hierarchy since it
reflects the designer point of view. More examples and algorithms
on how to derive match candidates based on type hierarchy are
detailed in our previous work [2].

5.4 Structural matching
The matching techniques described in sections 5.1, 5.2 and 5.3
may provide incorrect match candidates. Structural matching is
used to correct such match candidates based on their structural
context and thus derive correct direct and complex matches.
Structural matching relies on the notion of node context. In the
following we describe the basis needed to define such context and
thus perform structural matching.

5.4.1 Node context definition
As in [10], we distinguish three kinds of node contexts depending
on its position in the schema graph: (1) The ancestor-context: of a
node n is defined as the path (going through containment edges)
having n as its ending node and the root of the schema graph as its
starting node. The ancestor-context of the root node is empty and
it is assigned a NULL value; (2) The Child-context: of a node n
includes its attributes (through of-property edges) and its
immediate subelements (through containment edges). The child-
context of a node reflects its basic structure and its local
composition. The child-context of an atomic node is assigned a
NULL value. For association relationships, we include the
associated nodes in the child context. For example the child-
context of the node Article in the schema graph of Figure 1 is
composed of nodes Title, Author, Uri, Abstract and Journal-ref.
Since Journal-ref is a key ref node, we also include the referential
node Journal in the child-context of Article; and (3) The leaf-
context: Leaves XML documents represent the atomic data that
the document describes. The leaf-context of a node n includes the
leaves of the subtrees (composed by containment relationships)
rooted at n and. The leaf-context of an atomic node is assigned a
NULL value.

The context of a node is defined as the union of its ancestor-
context, its child-context and its leaf-context. Two nodes are
structurally similar if they have similar contexts. To measure the
structural similarity between two nodes, we compute respectively
the similarity of their ancestor, child and leaf contexts.

5.4.2 Path resemblance measure
Structural node context defined in section 5.4.1 relies on the
notion of path. In order to compare two contexts, we essentially

need to compare two paths. Path comparison has been widely
used in answering conjunctive queries. However, they rely on
strong matching following the two classical constraints: root
constraint and edge constraint. Under such conditions paths such
as Author/Publication and Publication/Author are no matched
however they convey same semantics. Other unmatchable paths
under such conditions are Author/Contact/Address and
Author/Address. Based on such observations, it is more
appropriate to go beyond the strong matching by relaxing the
above conditions. One can think of several ways of relaxing
strong matching: for example allow matching paths even when
nodes are not embedded in a same manner or in the same order.
Several works in query answering have proposed relaxation issues
to approximate answering of queries (including path queries) [1],
[4]. Relaxations may give raise to multiple match candidates. For
this reason, authors in [4] define a path resemblance measure
between a given path query Q and a path in the source tree. Such
measure is used for ranking match candidates. We extend these
definitions by allowing two elements within each path to be
matched, even if they are not identical but their linguistic
similarity exceeds a fixed threshold. We define a path
resemblance measure, denoted pr, which determines the similarity
between two given paths. The values of pr range between 0 and 1.
Match candidates can then be ranked according to pr measure.

Consider two paths P1 and P2 being matched (when P1 is a target
path and P2 is a source path), P2 is the best match candidate for P1
if it fulfils the following criteria:

• The path P2 includes most of the nodes of P1 in the right
order.

• The occurrences of the P1 nodes are closer to the beginning
of P2 than to the tail, meaning that the optimal matching
corresponds to the leftmost alignment.

• The occurrences of the P1 nodes in P2 are close to each other,
which mean that the minimum of intermediate non matched
nodes in P2 are desired.

• If several match candidates that match exactly the same
nodes in P1 exist, P2 is the shortest one.

To calculate pr (P1, P2), we first represent each path as a set of
string elements; each element represents a node name (e.g., the
path Author/Publication is a string composed two string elements
Author and Publication). We used the four scores established in
[4] and borrowed from dynamic programming for string
comparison; each of which corresponds to one of the above
criteria.

5.4.2.1 Longest Common Subsequence
To answer the first criterion, we use a classical dynamic
programming algorithm in order to compute the Longest Common
Subsequence (LCS), between P1 and P2. More the length of the
longest common subsequence is high; more P2 includes P1 nodes
in the right order. Finally, to obtain a score in [0,1], we normalize
the length of the longest common subsequence by the length of
target path P1 as following:

lcsn(P1, P2) =|lcs(P1, P2)|/|P1|

105

Example: Consider P1 to be Publication/Book/Author and P2 as
Author/Publication/Book, the longest common subsequence
between the two paths is Publication/Book,  lcs (P1, P2) = 2,
thus lcsn = 2/3= 0.66.

5.4.2.2 Average positioning
To answer the second criterion, we first compute, according to lcs
(P1, P2) what would be the average positioning of the optimal
matching of P1 within P2. The optimal matching is the match that
starts on the first element of P1 and continues without gaps.
Consider P1 = Author/Publication/Book and P2 =
Staff/Author/Publication/Book, since the optimal matching
corresponds to the leftmost alignment, the average optimal
position, denoted Av-Optimal-Position is (1+2+3)/3 =2. We then
evaluate using the LCS algorithm, the actual average positioning
(AP). AP takes the value 3 in our example ((2+3+4)/3). Last, we
compute pos coefficient indicating how far the actual positioning
is from the optimal one, using the following formula:

pos(P1, P2) = 1-((AP-Av-Optimal-Position)/(|P2|-2*Av-Optimal-
Position+1))

5.4.2.3 LCS with minimum gaps
To answer the third criterion, we use another version of the LCS
algorithm in order to capture the LCS alignment with minimum
gaps. If P1 = Person/Address and P2 = Person/Contact/Address,
we count a gap of length 1 between the two paths, thus gaps =1.
To ensure that we obtain a score inferior to 1, we normalize the
obtained gap using the following formula:

 gap(P1, P2) = gaps/(gaps + lcs(P1, P2))

5.4.2.4 Length difference
Finally, in order to give higher values to source paths whose
length is similar to the target path, we suggest to compute the
length difference ld between a source path P1 and lcs(P1, P2)
normalized by the length of P1 as follow:

 ld(P1, P2)= (|P2|- lcs(P1, P2))/|P2|
To obtain the path resemblance score, all the above metrics are
combined as follow:
pr(P1, P2) = α lcsn (P1, P2) + ß pos(P1, P2) – λ gap(P1, P2) – δ
ld(P1, P2)4
Example: Let P2 = Author/Book/title and P1=
University/Author/Publications/Book/Description/Title/subtitle;
We have  lcs = (2+3+4)/3 = 3, AP = (2+4+6)/3 = 4, gaps =2,
ld= 7-3/7=4/7. We obtain a path resemblance score equal to 0.68.

5.4.3 Structural context similarity

5.4.3.1 Ancestor context similarity
The ancestor context similarity, ancestor-ctx-sim captures the
similarity between two nodes based on their ancestor context;

4 α ,ß, λ and δ are positive parameters ranging between 0 and

1 that represent the comparative importance of each factor. They
can be tuned but must satisfy a + ß = 1, so that pr(P1, P2) =1 in
case of a perfect match, and λ and δ must be chosen small enough
so that pr cannot take a negative value.

defined for a given node n by the path from the root to n. The
ancestor-ctx-sim between two nodes n1 and n2 is given by the path
resemblance measure between the two paths (root, n1) and (root,
n2) weighted by the linguistic similarity between n1 and n2 as
follow:

ancestor-ctx-sim (n1, n2)← pr ((root, n1), (root, n2)) × lsim (n1, n2)

5.4.3.2 Child-context similarity
The child-context similarity, child-ctx-sim is obtained by
comparing nodes immediate descendents (children) sets including
attributes and subelements. Let us consider a node n1 having n
immediate children represented by the set (n11, …, n1n) and node
n2 having m immediate children represented by (n21, …, n2m). To
compute the similarity between these two sets, we first compute
the linguistic similarity between each pair of children in the two
sets. Second, we select the matching pairs with maximum
similarity values. And finally, we take the average of best
similarity values.

5.4.3.3 Leaf context similarity
Since the effective content of a node is often captured by the leaf
nodes of the subtree rooted at that node, we compute leaf context
similarity of two nodes n1 and n2 by comparing their respective
leaves sets: leaves (n1) and leaves (n2). It is possible that each
schema represents different levels of abstraction and different
granularities. Thus, to compute the similarity between two leaves
l1 ∈ leaves (n1) and l2 ∈ leaves (n2), we propose to compare the
contexts in which appear these leaves. If a leaf node l ∈ leaves
(n1), then the context of l is given by the path from n1 to l. The
context similarity of two leaves is then obtained by comparing
such paths; the path resemblance measure is then used as follow:

 Leaf-sim (l1,l2)= pr ((n1,l1), (n2,l2)) × lsim (l1,l2)
The leaf context similarity of two nodes n1 and n2 is obtained by
first computing the leaf similarity between each pair of leaves in
the two leaves sets, second selecting the matching pairs with
maximum similarity values, and finally taking the average of best
similarity values.

5.4.4 Node similarity
In this section, we propose to compute the similarity of two nodes
belonging respectively to source schema graph and target schema
graph by combining all the previous similarity measures
(linguistic similarity, datatype compatibility and context
similarity). For this, we distinguish three different cases:

• Case 1: The two nodes being compared are atomic nodes
(leaves), and then their respective child context and leaf
context are assigned the NULL value. The similarity between
two atomic nodes is then given by the similarity of their
respective ancestor context weighted by their linguistic
similarity.

• Case 2: One of the two nodes being compared is an atomic
node, say n1, and the other is a complex node, say n2. Since
for the atomic node n1, the child-context and the leaf-context
are assigned a Null values. The similarity between n1 and n2
is obtained by computing first their respective ancestor-
context. Second, since the content of an atomic node is
captured by the node it self, while the content of a non

106

atomic node is captured by its leaf-context, we propose to
calculate the average of the linguistic similarity between n1
and nodes belonging to the leaf-context of n2. The similarity
between the two nodes is then obtained by weighted
similarity of their ancestor and leaf contexts.

• Case 3: Both nodes are complex nodes and then their
similarity is the weighted sum of their ancestor context
similarity, their child-context similarity and their leaf context
similarity.

Once element similarity is computed, one can use it to correct
indirect matches and set appropriate operations as we will
describe in section 5.4.5.

5.4.5 Discovery of nodes and edges matches
Most schema matching algorithms produce similarity scores
between source and target schemas nodes such as the ones we
produce in section 5.4.4. Such result solves partially the problem.
First, produced similarities between individual nodes are not
enough to produce access paths for retrieving data from the
available sources. Second, all the produced mappings are one-to-
one mappings, complex mappings identified using type hierarchy
have to be incorporated in the matching result and further
complex mappings have to be discovered. For this we proceed in
four steps:

Step 1: Compatible nodes identification

While generating mapping elements, we apply a top-down
strategy5. At the top level, we establish correspondences between
complex nodes of the target and source schemas. Similar complex
nodes are called compatible nodes. Let us consider simplified
schema graphs illustrated by Figure 2(a) and 2(b). Assume that
both nodes University are similar (based on node similarity
measure described in section 5.4.4), then they are considered as
compatible nodes. Node Library is not a compatible node, since it
has not similar node. Visually compatible nodes are depicted as
coloured boxes and dashed lines.

Step 2: Context generation for compatible nodes

After identifying compatible nodes, we proceed to construct a
context for each compatible node (the notion of context here
differs from the context we defined in section 5.4.1). By taking
edges around a complex node n into account, we cluster a set of
nodes and edges with a complex node as a conceptual component
in the schema graph. We call this the context of n. For a given
compatible node n, we construct such context by (1) including all
atomic nodes directly related to the compatible node n; (2)
including all non compatible nodes directly connected to n with
their connected atomic nodes and connected non compatible
nodes; (3) if a directly connected compatible node is also similar
to an atomic node, it is also included in the context of n; (4)
including all nodes having an association relationship with n and
their respective context; and (5) including all containment

5 We use the same top-down strategy as in [26]. However the

difference is that this technique is used to discover structural
similarity. In our approach, it is just used for mapping
generation; the structural matching has been already performed.

relationships between nodes in the context of n. Figure 2 illustrate
two schema graphs after context construction.

Example: In Figure 2 (b), the context of the compatible node
University includes atomic nodes Name and Location and non
compatible node Library. The context of compatible node Article
includes referential node Journal and its context. In Figure 2 (a),
the context of node University include the compatible node
Address, since Address is similar to a leaf node (location)
belonging to the context of a matched node University.

Step 3: Node mappings generation

At this point, we finished with the top level comparison between
source and target schema graphs. We are now ready to detect node
and edges matches at the bottom level. For each matching pair
(nT , nS) which represented two compatible nodes in source and
target schema graphs, we make use of node similarity score
generated in section 5.4.4 to settle nodes matches. The following
gives examples on how we proceed:

Example 1: Let the schema in Figure 2 (a) be the target schema
and the schema in Figure 2 (b) be the source schema. Consider the
two compatible nodes: target node University (UniversityT) and
the source node University (UniversityS), we first settle node-set
matches between both source and target contexts that hold with
the highest node similarity score. As an example, we settle the
match pair (NameT, NameS) using a connect operation.

Example 2: The target node AddressT is both similar to the source
nodes University/Location and Author/Address with
approximatively same scoring. This is due to in the case of
University/Location to the fact that ancestor context similarity is
high and in the case of Author/Address to the fact that the leaf
context similarity is high. Since target node University/Address
and source node Author/Address belong to non compatible
complex nodes while target element University/Address and
source element University/Location belong to two compatible
contexts, a match is then derived between source node
University/Location and target node University/Address.
Moreover since we decide to map a non-leaf node with a leaf
node, a complex mapping with split operation can be deduced.

Example 3: Assume that we have already discovered that the
union of target nodes Journal-article and Proceeding-article
match the source node Article based on designer type hierarchy
analysis. Such mapping can be confirmed or rejected by the
system after compatible nodes context analysis. In fact, the
context of source node Article includes the referential node
Journal. Moreover, based on node similarity, the target node
Journal-article is compatible with both source nodes Article and
Journal. By analysing the contexts of source node Article, we
discover that it more likely matches the target node Journal-
article. The complex mapping is then removed and a new
mapping is settled between source node Article and target node
Journal-article using a join operation. Let just notice that if node
Journal is not present in the source schema graph, the discovered
complex mapping is accepted and a selection operation is
assigned to it.

Step 4: Access paths generation

With the available correspondences between nodes in source and
target schemas, we further discover matches between edges. As in

107

[26], the recognition of edges matches starts by locating an edge
set et in T. Then, based on nodes Nt connected by et, we can locate
a set of nodes that correspond to Nt in S, from which we either
locate or derive a edge set es that corresponds to et. We further
focus on the discovery of access paths in order to retrieve source
data when performing transformation. For each target element t,
we first define the access path indicating where matched source
elements are localized, then the discovered transformation
operation and finally the conditions under which the mapping
element holds true. Examples of generated mapping rules are
given in Figure 3.

6. Performance Study

6.1 Real world example
In order to evaluate the proposed matching techniques, we
considered one real-world application: bibliographic data
description. The characteristics of used XML schemas are
summarized in Figure 4 showing some indications of the
complexity of test schemas. We choose schemas that differ in the
number of nodes (schema size) and in their depth (the manner of

nodes nesting). Test schemas present linguistic and structural
heterogeneities. We let any one of the schema graphs be the target
and let any other schema graph be the source. Different
granularities and abstract levels are used to describe the same real
world concepts. Test schemas require several indirect matches
involving merge/split, union/select and join operators. To
compute real matches, two different users were involved, and the
average number of users discovered matches was considered. The
total number of real matches was 1382 matches (1102 direct
matches and 280 complex matches). Our matching algorithm
discovered 1312 matches including 1281 correct matches and 31
incorrect matches. The incorrectly classified mapping elements
include 18 direct mappings and 13 complex mappings. The
correctly recognized mapping elements included 1082 direct
matches and 199 indirect matches. For direct matches, the
precision, recall, F-measure and overall achieved 99%, 94%, 97%,
and 93%. For complex matches, the precision, recall, F-measure
and overall achieved 98%, 71%, 82%, and 70%. The
performance of the matching algorithm reached for precision,
recall, F-measure and overall 98%, 92%, 95%, and 90%.

Our process successfully found all the complex matches related to
the problems of Merged/Split Values and join relationships.
However, for the problem of union/selection, our matching
algorithm correctly found all the complex matches related to 80 of
93 union/selection matches and incorrectly declared 13 extra
union/selection operators. For discovering union/selection
operators, we essentially rely on type hierarchy analysis, if
available; otherwise we make use of WordNet semantic
relationships. Among the 80 discovered union/selection relations,
22 are discovered using WordNet. The experimental results show

(a)

(b)

Figure 2. Source and target schema graphs
after context construction.

Figure 3. Examples of generated mapping rules.

108

that the combination of linguistic and structural matching
produces fairly reasonable results, even if schemas are structurally

highly heterogeneous.

6.2 Comparative study
In this section, we essentially run evaluation comparisons between
our proposed solution, Cupid and Similarity Flooding systems.
This is because Cupid, SF and our solution are fairly comparable
because they deal with XML structure, they are all schema based,
and they all utilize linguistic and structural matching techniques.
Figure 5 illustrates the obtained results. From the point of view of
the quality of the matching results, our proposed solution
outperforms the other systems:
(1) Direct matches: Since our basic goal is to compare the
structural matching capabilities of each system, we use the results
of our linguistic matching algorithm as an initial mapping to both
Cupid and SF. Given schemas of varying levels of details such as
address (city, state, zip) and address, both Cupid and SF will
return a low similarity measure. The reason is that Cupid is biased
towards the similarity of leaf nodes, and SF towards the similarity
of adjacent nodes. When matching schema elements with different
contexts, such as researcher (name, address) and researcher
(name, supervisor (name, address)), both Cupid and SF fail to
distinguish researcher name from supervisor name. Our solution is
able to obtain correct mappings because we maximize the use of
structure by taking into considerations ancestor-context, child-
context and leaf-context similarities.
(2) Complex matches: Up to now, most of current matching
approaches have focused only on direct matches. They do not
consider complex mapping. In Cupid, if a leaf node s in the source
schema is highly similar to a target leaf node t in the target
schema, a mapping element between s and t is returned. This
resulting mapping may be 1:n, since a source element may map to
many target elements. This simplest scheme to compute global 1:n

mappings is very limited. First because only splitting values are
considered (no n :1 mappings are discovered). Second, this
technique leads frequently to wrong complex matches, imagine
that we have a source schema with a node S.University having a
child node Address (S.Address) and a target nodes T.University
and T.Author where both of them having a child node Address. If
the similarity between S.University.Address and
T.University.Address approximates the similarity between
S.University.Address and T.Author.Address, a wrong complex
match will be discovered. This is avoided in our approach by
considering only compatible nodes contexts. Finally, no
union/select and join complex mappings are considered in Cupid.
As in cupid, the discovery of complex match is SF is done after
the structural matching. SF makes use of several filters to deduce
the list of match candidates from a list of ranked matching pairs.
The filtering can be characterized by providing a set of constraints
and selection functions that pick the best subset of the multiple
mapping under a given selection metric. For a given similarity
threshold, SF selects a subset of a multiple mapping, in which all
map pairs carry a similarity value of at least equal to the threshold
value. Contrary to Cupid, SF can generate global m:n mappings,
however similarly to Cupid several wrong mappings are generated
and no specific operations are discovered. Our matching solution
gives reasonably correct complex mappings because we limited
the search scope to compatible nodes contexts and rely on
structure to discover such mappings.

7. XSLT scripts generation
After validating generated mapping rules by the user, we structure
the mapping result using W3C XML Schema language and this
for two reasons. First, it is easier to manipulate structured
mapping result either to modify it or to automatically generate
transformation scripts. Second, structuring the mapping result
greatly increases its reusability and adaptation, especially when
schemas evolve. The nature of mapping result may be understood
by considering different dimensions, each describing one
particular aspect: (1) the entity dimension, specifying schema
entities involved in a mapping element; (2) the cardinality
dimension: determining the cardinality of a mapping element
ranging from direct mapping (1:1) to complex mapping (m:n); (3)
the structural dimension, reflecting the way how elementary
mapping elements may be combined into more complex mapping
elements; (4) the transformation dimension, reflecting how
instances of the source schema are transformed during the
mapping process; and (5) the constraint dimension, controlling
the execution of a mapping element. Based on the established
mapping between source and target schema in section 5.4, a
mapping generator relates a given source and target schema
graphs by generating an instance of the mapping schema
containing a set of mapping elements each of which encapsulates
all information needed to transform instances of source nodes into
instances of target nodes. An XSLT generator will then traverse
the both the target schema graph and the mapping result in a
depth-first manner and generates adequate XSLT templates for
each mapping element. The structure of the target schema is
respected, while generating the XSLT script. This guarantees the
generation of valid target instances after the transformation
process. Structured mapping generator and XSLT generator
descriptions are out of the scope of this paper. Detailed
description and examples could be found in [2].

Figure 4. Characteristics of tested schemas.

Figure 5. Comparative study with Cupid and SF.

109

8. Conclusion
Due to the extensive use of XML markup language in several
domains, there has been a great interest on proposing rich data
models that reflects document semantics and structure. The
existence of such rich models has made a large amount of
heterogeneously XML documents widely available. In this
framework, XML documents transformation is of major concern.
Currently, to perform XML document transformations, the burden
falls on the human to manual coding the transformations. This
paper proposed novel schema matching techniques for automating
the transformation of XML documents. We essentially proposed a
structural similarity measure that relates schemas nodes based on
the similarity of the structural context in which they appear. Our
experiments showed that the combination of ancestor, child and
leaf context play an important role in deriving correct matches.
Generated mapping result is then used to automatically generate
XSLT scripts. A prototype system that incorporates a
conceptualization toolkit for generating and graphically
represented schema graphs for W3C XML schema and graphical
user interfaces to support the matching process and its validation,
has been implemented.

9. REFERENCES
[1] S. Amer-Yahia, S.Cho, D. Srivastava, "Tree Pattern

Relaxation" EDBT'02, 2002.
[2] A.Boukottaya. “Schema matching for structured document

transformations”, PHD thesis, October 2004.
[3] A. Budanitsky and G.Hirst. Semantic distance in WordNet.

An experimental, application oriented evaluation of five
measures, 2003.

[4] D.Carmel, N. Efraty, G.M.Landau, Y.S.Maarek, and Y.Mass.
An Extension of the vector space model for querying XML
documents via XML fragments. Second Edition of the XML
and IR Workshop, In SIGIR Forum, Volume 36 Number 2,
Fall 2002.

[5] S. Chawathe, H. García-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J. Widom. The TSIMMIS
Project: Integration of heterogeneous information sources. In
16th meeting of the IPSJ, pages 7-18, Tokyo, Japan, 1994.

[6] AH.Doan, P.Domingos, A.Halevey. Reconciling schemas of
disparate data sources:A machine Learning Approach. In
Proceedings ACM SIGMOD Conference, pages 509-520,
2001.

[7] D.W. Embley, D.M.Campbell, Y.S. Jiang, S.W.Liddle, D.W.
Lonsdale, Y.K.Ng and R.D.Smith. Conceptual-model-based
data extraction from multiple record Web pages. Data and
Knowledge Engineering, 31(3), pages 227-251, 1999.

[8] Lexical chains as representations of context for the detection
and correction of malapropisms. In: Christiane Fellbaum
(editor), WordNet: An electronic lexical database,
Cambridge, MA: The MIT Press, 1998.

[9] JA. Larson, SB. Navathe, R. ElMasri. A Theory of attribute
equivalence in databases with application to schema
integration. IEEE TransSoftwareEng 16(4):449-463, 1989.

[10] Mong Li Lee, Liang Huai Yang, Wynne Hsu, Xia Yang.
XClust: Clustering XML Schemas for Effective Integration,
in 11th ACM International Conference on Information and
Knowledge Management (CIKM), McLean, Virginia,
November 2002.

[11] P. Leinonen. Automating XML Document Structure
Transformations. In Proceedings of the ACM Symposium on
Document Engineering, France, 2003.

[12] J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema
matching with Cupid. In Proceedings of the International
Conference on Very Large Databases (VLDB), 2001.

[13] S.Melnik, H.Garcia-Molina, E.Rahm. Similarity Flooding: A
versatile Graph Matching Algorithm and its Application to
Schema Matching. In Proceedings of the 18th International
Conference on Data Engineering, 2002.

[14] A.G. Miller (1995). WordNet: A lexical Database for
English. ACM 38 (11). pages 39-41, 1995.

[15] E.Pietriga, J-Y.Vion-Dury, and V.Quint.(2001). Vxt: a visual
approach to XML transformations. In Proceedings of the
ACM Symposium on Document Engineering, 2001.

[16] E. Rahm and P.A. Bernstein. A survey of approaches to
automatic schema matching. In VLDB Journal, pages 10:
334-350, 2001.

[17] E. Rahm and P.A. Bernstein. On matching schema
automatically. Microsoft Research Publications, 2001.
Available at http://www.research.microsoft.com/pubs.

[18] H.Su, H.Kuno, E.A.Rundensteiner. Automating the
transformation of XML Documents. In Proceedings of the
ACM Symposium on Document Engineering, 2001.

[19] X.Tang and F. Tompa. Specifying transformations for
structured documents. In Proceedings of 4th International
Worshop on Web and Databases (WebDB 2001), pages 67-
72. 2001.

[20] A. Vernet. XML transformation languages. Available at
http://www.scdi.org/~avernet/misc/xml-transformation

[21] Extensible Markup Language (XML) 1.0, W3C
Recommendation, 1998. Available at
http://www.w3.org/TR/REC-XML

[22] XSL Transformations (XSLT) 1.0, W3C Recommendation,
1999. Available at http://www.w3.org/TR/1999/REC-xslt-
19991116

[23] XML Schema Part 0: Primer, W3C Recommendation, 2001.
Available at http://www.w3.org/TR/2001/REC-xmlschema-
0-20010502/

[24] XML Schema Part 2: Datatypes, W3C Recommendation,
2001. Available at http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/

[25] XSLWIZ. Available at
http://www.induslogic.com/products/xslwiz.html

[26] L.Xu Source Discovery and Schema Mapping for Data
Integration, PhD Dissertation, July 2003

110

